A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits

Masanori Saito Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Masanori Saito in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5188-7471
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
,
Norman G. Loeb NASA Langley Research Center, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
, and
Seiji Kato NASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Masanori Saito, masa.saito@tamu.edu

Abstract

Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Masanori Saito, masa.saito@tamu.edu
Save
  • Aoki, T., T. Aoki, M. Fukabori, and A. Uchiyama, 1999: Numerical simulation of the atmospheric effects on snow albedo with a multiple scattering radiative transfer model for the atmosphere-snow system. J. Meteor. Soc. Japan, 77, 595614, https://doi.org/10.2151/jmsj1965.77.2_595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, T., T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, 2000: Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res., 105, 10 21910 236, https://doi.org/10.1029/1999JD901122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, T., A. Hachikubo, and M. Hori, 2003: Effects of snow physical parameters on broadband albedos. J. Geophys. Res., 108, 4616, https://doi.org/10.1029/2003JD003506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, T., K. Kuchiki, M. Niwano, Y. Kodama, M. Hosaka, and T. Tanaka, 2011: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, C. Liu, B. Yi, B. A. Baum, B. van Diedenhoven, and H. Iwabuchi, 2014: Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 146, 158174, https://doi.org/10.1016/j.jqsrt.2014.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol., 40, 2767, https://doi.org/10.1080/02786820500421521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schonhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmagnola, C. M., and Coauthors, 2013: Snow spectral albedo at Summit, Greenland: Measurements and numerical simulations based on physical and chemical properties of the snowpack. Cryosphere, 7, 11391160, https://doi.org/10.5194/tc-7-1139-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, C., R. E. Brandt, and S. G. Warren, 2015: Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon. J. Geophys. Res. Atmos., 120, 54465468, https://doi.org/10.1002/2014JD022646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, C., Q. Fu, and S. G. Warren, 2016: Effect of snow grain shape on snow albedo. J. Atmos. Sci., 73, 35733583, https://doi.org/10.1175/JAS-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dang, C., S. G. Warren, Q. Fu, S. J. Doherty, M. Sturm, and J. Su, 2017: Measurements of light-absorbing particles in snow across the Arctic, North America, and China: Effects on surface albedo. J. Geophys. Res. Atmos., 122, 10 14910 168, https://doi.org/10.1002/2017JD027070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. Brandt, 2010: Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys., 10, 11 64711 680, https://doi.org/10.5194/acp-10-11647-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., X. Liu, C. Zhou, J. E. Penner, and C. Jiao, 2012: Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phys., 12, 46994721, https://doi.org/10.5194/acp-12-4699-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and M. J. Sharp, 2010: A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res., 115, F01009, https://doi.org/10.1029/2009JF001444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., S. G. Warren, and P. C. Mullen, 1994: Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res., 99, 18 66918 684, https://doi.org/10.1029/94JD01484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., and L. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610, https://doi.org/10.1007/BF00168069.

  • Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101, 423428, https://doi.org/10.1073/pnas.2237157100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., Y. Takano, and K. N. Liou, 2017a: Close packing effects on clean and dirty snow albedo and associated climatic implications. Geophys. Res. Lett., 44, 37193727, https://doi.org/10.1002/2017GL072916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., Y. Takano, K. N. Liou, P. Yang, Q. Li, and F. Chen, 2017b: Impact of snow particle shape and black carbon-snow internal mixing on snow optical properties: Parameterizations for climate models. J. Climate, 30, 10 01910 036, https://doi.org/10.1175/JCLI-D-17-0300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., M. G. Flanner, F. Chen, M. Barlage, K. N. Liou, S. Kang, J. Ming, and Y. Qian, 2018a: Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model. Atmos. Chem. Phys., 18, 11 50711 527, https://doi.org/10.5194/acp-18-11507-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., K. N. Liou, and Y. Takano, 2018b: Resolving size distribution of black carbon internally mixed with snow: Impact on snow optical properties and albedo. Geophys. Res. Lett., 45, 26972705, https://doi.org/10.1002/2018GL077062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., K. N. Liou, Y. Takano, P. Yang, L. Qi, and F. Chen, 2018c: Impact of grain shape and multiple black carbon internal mixing on snow albedo: Parameterization and radiative effect analysis. J. Geophys. Res. Atmos., 123, 12531268, https://doi.org/10.1002/2017JD027752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., P. Yang, G. Kattawar, and K. N. Liou, 2015: Effect of mineral dust aerosol aspect ratio on polarized reflectance. J. Quant. Spectrosc. Radiat. Transfer, 151, 97109, https://doi.org/10.1016/j.jqsrt.2014.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishimoto, H., S. Adachi, S. Yamaguchi, T. Tanikawa, T. Aoki, and K. Masuda, 2018: Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties. J. Quant. Spectrosc. Radiat. Transfer, 209, 113128, https://doi.org/10.1016/j.jqsrt.2018.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwabuchi, H., P. Yang, K. N. Liou, and P. Minnis, 2012: Physical and optical properties of persistent contrails: Climatology and interpretation. J. Geophys. Res., 117, D06215, https://doi.org/10.1029/2011JD017020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, P. Yang, Y. Xie, and W. Miller, 2008: Snow optical properties for different particles shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica. Remote Sens. Environ., 112, 35633581, https://doi.org/10.1016/j.rse.2008.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, https://doi.org/10.1016/S0022-4073(98)00075-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, and T. P. Charlock, 2005: Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Oceanic Technol., 22, 146164, https://doi.org/10.1175/JTECH-1694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., T. Kameda, K. Higuchi, and A. Yamashita, 2013: A global classification of snow crystals, ice crystals, and solid precipitation based on observations from middle latitudes to polar regions. Atmos. Res., 132–133, 460472, https://doi.org/10.1016/j.atmosres.2013.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose, 1999: Accounting for molecular absorption within the spectral range of the CERES window channel. J. Quant. Spectrosc. Radiat. Transfer, 61, 8395, https://doi.org/10.1016/S0022-4073(97)00203-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., Y. Takano, C. He, P. Yang, L. R. Leung, Y. Gu, and W. L. Lee, 2014: Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J. Geophys. Res. Atmos., 119, 76167632, https://doi.org/10.1002/2014JD021665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macke, A., M. I. Mishchenko, and B. Cains, 1996: The influence of inclusions on light scattering by large ice particles. J. Geophys. Res., 101, 23 31123 316, https://doi.org/10.1029/96JD02364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, S. E., 1989: A physical parameterization of snow albedo for use in climate models. NCAR Cooperative thesis 123, 175 pp.

  • Marshall, S. E., and R. Oglesby, 1994: An improved snow hydrology for GCMs. Part 1: Snow cover fraction, albedo, grain size, and age. Climate Dyn., 10, 2137, https://doi.org/10.1007/BF00210334.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., V. P. Tishkovets, L. D. Travis, B. Cairns, J. M. Dlugach, L. Liu, V. K. Rosenbush, and N. N. Kiselev, 2011: Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions. J. Quant. Spectrosc. Radiat. Transfer, 112, 671692, https://doi.org/10.1016/j.jqsrt.2010.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suaìrez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., O. Abe, T. Hasegawa, R. Tamura, and T. Ohta, 2001: Spectral reflectance of snow with a known particle-size distribution in successive metamorphism. Cold Reg. Sci. Technol., 32, 1326, https://doi.org/10.1016/S0165-232X(01)00019-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwano, M., T. Aoki, K. Kuchiki, M. Hosaka, and Y. Kodama, 2012: Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan. J. Geophys. Res., 117, F03008, https://doi.org/10.1029/2011JF002239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolin, A. W., and J. Dozier, 2000: A hyperspectral method for remotely sensing the grain size of snow. Remote Sens. Environ., 74, 207216, https://doi.org/10.1016/S0034-4257(00)00111-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oaida, C. M., Y. Xue, M. G. Flanner, S. M. Skiles, F. De Sales, and T. H. Painter, 2015: Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S. J. Geophys. Res. Atmos., 120, 32283248, https://doi.org/10.1002/2014JD022444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtake, T., and T. Yogi, 1979: Winter ice crystals at the South Pole. Antarct. J. U. S., 14, 201203.

  • Picard, G., L. Arnaud, F. Domine, and M. Fily, 2009: Determining snow specific surface area from near-infrared reflectance measurements: Numerical study of the influence of particle shape. Cold Reg. Sci. Technol., 56, 1017, https://doi.org/10.1016/j.coldregions.2008.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99, 20 75720 771, https://doi.org/10.1029/94JD01633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S. K., K. Sujith, S. Pokhrel, H. S. Chaudhari, and A. Hazra, 2017: Effects of multilayer snow scheme on the simulation of snow: Offline Noah and coupled with NCEP CFSv2. J. Adv. Model. Earth Syst., 9, 271290, https://doi.org/10.1002/2016MS000845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., R. S. Gao, A. E. Perring, J. R. Spackman, and D. W. Fahey, 2013: Black carbon aerosol size in snow. Sci. Rep., 3, 1356, https://doi.org/10.1038/srep01356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegmann, P. G., and P. Yang, 2017: A regional, size-dependent, and causal effective medium model for Asian and Saharan mineral dust refractive index spectra. J. Aerosol Sci., 114, 327341, https://doi.org/10.1016/j.jaerosci.2017.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., R. L. Panetta, P. Yang, G. L. Kattawar, and P. W. Zhai, 2017: Effect of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective. J. Quant. Spectrosc. Radiat. Transfer, 195, 119131, https://doi.org/10.1016/j.jqsrt.2017.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walden, V. P., S. G. Warren, and E. Tuttle, 2003: Atmospheric ice crystals over the Antarctic plateau in winter. J. Appl. Meteor., 42, 13911405, https://doi.org/10.1175/1520-0450(2003)042<1391:AICOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., S. J. Doherty, and J. Huang, 2013: Black carbon and other light-absorbing impurities in snow across northern China. J. Geophys. Res. Atmos., 118, 14711492, https://doi.org/10.1029/2012JD018291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys., 20, 6789, https://doi.org/10.1029/RG020i001p00067.

  • Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 27342745, https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, https://doi.org/10.1029/2007JD009744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 27122733, https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified model for global climate studies. J. Climate, 4, 345364, https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, Y., S. Sun, D. S. Kahan, and Y. Jiao, 2003: Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J. Geophys. Res., 108, 8859, https://doi.org/10.1029/2002JD003174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71, 223248.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y.-X. Hu, H.-L. Huang, S.-C. Tsay, and S. A. Ackerman, 2003: Single scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 11591169, https://doi.org/10.1016/S0022-4073(02)00347-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K. N. Liou, G. L. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., J. Ding, R. L. Panetta, K.-N. Liou, G. W. Kattawar, and M. I. Mishchenko, 2019: On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles. Prog. Electromagn. Res., 164, 2761, http://www.jpier.org/PIER/pier.php?paper=18112810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T. J., R. D. Koster, K.-M. Lau, T. Aoki, Y. C. Sud, T. Yamazaki, H. Motoyoshi, and Y. Kodama, 2011: Influence of dust and black carbon on the snow albedo in the NASA Goddard Earth Observing System version 5 land surface model. J. Geophys. Res., 116, D02210, https://doi.org/10.1029/2010JD014861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2018: Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere, 12, 413431, https://doi.org/10.5194/tc-12-413-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. Hu, A. J. Heymsfield, and J. Reichardt, 2004: Geometrical-optics solution to light scattering by droxtal ice crystals. Appl. Opt., 43, 24902499, https://doi.org/10.1364/AO.43.002490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., S. Li, and K. Stamnes, 2003: Effects of vertical inhomogeneity on snow spectral albedo and its implication for optical remote sensing of snow. J. Geophys. Res., 108, 4738, https://doi.org/10.1029/2003JD003859.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1030 216 20
PDF Downloads 631 108 10