Turbulent Collapse and Recovery in the Stable Boundary Layer Using an Idealized Model of Pressure-Driven Flow with a Surface Energy Budget

Amber M. Holdsworth School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Amber M. Holdsworth in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6857-7258
and
Adam H. Monahan School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Adam H. Monahan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution of the stable boundary layer is simulated using an idealized single-column model of pressure-driven flow coupled to a surface energy budget. Several commonly used parameterizations of turbulence are examined. The agreement between the simulated wind and temperature profiles and tower observations from the Cabauw tower is generally good given the simplicity of the model. The collapse and recovery of turbulence is explored in the presence of a large-scale pressure gradient, but excluding transient submesoscale atmospheric forcings such as internal waves and density-driven currents. The sensitivity tests presented here clarify the role of both rotation and the surface energy budget in the collapse and recovery of turbulence for the pressure-driven dry stable boundary layer (SBL). Conditions of stability are affected strongly by the geostrophic winds, the cloud cover, and the thermal conductivity of the surface. Inertial oscillations and the subsurface temperature have a weaker influence. Particularly noteworthy is the relationship between SBL regime and the relative importance of the terms in the surface energy budget.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amber M. Holdsworth, amber.holdsworth@dfo-mpo.gc.ca

Abstract

The evolution of the stable boundary layer is simulated using an idealized single-column model of pressure-driven flow coupled to a surface energy budget. Several commonly used parameterizations of turbulence are examined. The agreement between the simulated wind and temperature profiles and tower observations from the Cabauw tower is generally good given the simplicity of the model. The collapse and recovery of turbulence is explored in the presence of a large-scale pressure gradient, but excluding transient submesoscale atmospheric forcings such as internal waves and density-driven currents. The sensitivity tests presented here clarify the role of both rotation and the surface energy budget in the collapse and recovery of turbulence for the pressure-driven dry stable boundary layer (SBL). Conditions of stability are affected strongly by the geostrophic winds, the cloud cover, and the thermal conductivity of the surface. Inertial oscillations and the subsurface temperature have a weaker influence. Particularly noteworthy is the relationship between SBL regime and the relative importance of the terms in the surface energy budget.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amber M. Holdsworth, amber.holdsworth@dfo-mpo.gc.ca
Save
  • Acevedo, O. C., F. D. Costa, and G. A. Degrazia, 2012: The coupling state of an idealized stable boundary layer. Bound.-Layer Meteor., 145, 211228, https://doi.org/10.1007/s10546-011-9676-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • André, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878, https://doi.org/10.1175/1520-0469(1982)039<0864:TNSIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2002: Parameterizing scalar transfer over snow and ice: A review. J. Hydrometeor., 3, 417432, https://doi.org/10.1175/1525-7541(2002)003<0417:PSTOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 1999: Air Pollution Meteorology and Dispersion. Oxford University Press, 310 pp.

  • Baas, P., B. J. H. van de Wiel, S. J. A. van der Linden, and F. C. Bosveld, 2018: From near-neutral to strongly stratified: Adequately modelling the clear-sky nocturnal boundary layer at Cabauw. Bound.-Layer Meteor., 166, 217238, https://doi.org/10.1007/s10546-017-0304-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683090, https://doi.org/10.1175/JAS4002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Proc. Third Symp. on Atmospheric Turbulence, Diffusion and Air Quality, Boston, MA, Amer. Meteor. Soc., 46–49.

  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Adv. Environ. Sci. Eng., 1, 5085.

  • Bosveld, F. C., 2018: Cabauw reference site. UCAR, accessed 30 June 2018, https://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/baltex/cabauw/cabauw/.

  • Bosveld, F. C., and Coauthors, 2014: The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, https://doi.org/10.1007/s10546-014-9919-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A., R. Beare, J. Edwards, A. Lock, S. Keogh, S. Milton, and D. Walters, 2008: Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction model. Bound.-Layer Meteor., 128, 117132, https://doi.org/10.1007/s10546-008-9275-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 67–100.

  • Businger, J. A., 1988: A note on the Businger-Dyer profiles. Bound.-Layer Meteor., 42, 145151, https://doi.org/10.1007/BF00119880.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, D., and P. Richards, 1978: Modelling surface turbulent fluxes in stable conditions. Bound.-Layer Meteor., 14, 6781, https://doi.org/10.1007/BF00123990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chenge, Y., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519538, https://doi.org/10.1007/s10546-004-1425-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R., 1970: Observational studies in the atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 96, 91114, https://doi.org/10.1002/qj.49709640709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 18891903, https://doi.org/10.1029/JC083iC04p01889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82, 2348, https://doi.org/10.1023/A:1000132524077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90, 297325, https://doi.org/10.1023/A:1001710014316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, https://doi.org/10.1007/BF00240838.

  • ECMWF, 2013: IFS documentation—Cy40r1: Part IV: Physical processes. European Centre for Medium-Range Weather Forecasts Rep., 190 pp.

  • Edwards, J., 2009a: Radiative processes in the stable boundary layer: Part I. Radiative aspects. Bound.-Layer Meteor., 131, 105126, https://doi.org/10.1007/s10546-009-9364-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J., 2009b: Radiative processes in the stable boundary layer: Part II. The development of the nocturnal boundary layer. Bound.-Layer Meteor., 131, 127146, https://doi.org/10.1007/s10546-009-9363-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohari, S. M. I., and S. Sarkar, 2017: Direct numerical simulation of turbulence collapse and rebirth in stably stratified Ekman flow. Bound.-Layer Meteor., 162, 401426, https://doi.org/10.1007/s10546-016-0206-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, https://doi.org/10.1007/s10546-012-9771-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., N. A. McFarlane, and A. H. Monahan, 2019: A new TKE based parameterization of atmospheric turbulence in the Canadian global and regional climate models. J. Adv. Model. Earth Syst., https://doi.org/10.1029/2018MS001532, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1976: Wind profile relationships from the “Wangara” experiment. Quart. J. Roy. Meteor. Soc., 102, 535551, https://doi.org/10.1002/qj.49710243304.

    • Search Google Scholar
    • Export Citation
  • Holdsworth, A. M., T. Rees, and A. H. Monahan, 2016: Parameterization sensitivity and instability characteristics of the maximum sustainable heat flux framework for predicting turbulent collapse. J. Atmos. Sci., 73, 35273540, https://doi.org/10.1175/JAS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A., and H. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704, https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A., E. De Bruijn, and H. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575, https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A., G. Steeneveld, and B. Van de Wiel, 2007: Role of land-surface temperature feedback on model performance for the stable boundary layer. Atmospheric Boundary Layers, Springer, 205–220.

    • Crossref
    • Export Citation
  • Holtslag, A., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, J., and J. Sun, 1999: Surface-layer fluxes in stable conditions. Bound.-Layer Meteor., 90, 495520, https://doi.org/10.1023/A:1001788515355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., I. M. Cohen, and D. R. Dowling, 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1981: Modelling the depth of the stable boundary-layer. Bound.-Layer Meteor., 21, 319, https://doi.org/10.1007/BF00119363.

  • Mahrt, L., 1985: Vertical structure and turbulence in the very stable boundary layer. J. Atmos. Sci., 42, 23332349, https://doi.org/10.1175/1520-0469(1985)042<2333:VSATIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255278, https://doi.org/10.1023/A:1001171313493.

  • Mahrt, L., 2011: The near-calm stable boundary layer. Bound.-Layer Meteor., 140, 343360, https://doi.org/10.1007/s10546-011-9616-2.

  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, and D. Stauffer, 2015: Dependence of turbulent velocities on wind speed and stratification. Bound.-Layer Meteor., 155, 5571, https://doi.org/10.1007/s10546-014-9992-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maroneze, R., O. C. Acevedo, F. D. Costa, and J. Sun, 2019: Simulating the regime transition of the stable boundary layer using different simplified models. Bound.-Layer Meteor., 170, 305321, https://doi.org/10.1007/s10546-018-0401-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614, https://doi.org/10.1175/1520-0469(1995)052<1602:POTSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and Coauthors, 2012: Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J. Geophys. Res., 117, D14106, https://doi.org/10.1029/2012JD017578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVehil, G. E., 1964: Wind and temperature profiles near the ground in stable stratification. Quart. J. Roy. Meteor. Soc., 90, 136146, https://doi.org/10.1002/qj.49709038403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moene, A. F., B. J. H. Van de Wiel, and H. J. J. Jonker, 2010: Local similarity profiles from direct numerical simulation. 19th Symp. on Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc., 3A.2, https://ams.confex.com/ams/19Ag19BLT9Urban/webprogram/Paper172247.html.

  • Monahan, A. H., T. Rees, Y. He, and N. McFarlane, 2015: Multiple regimes of wind, stratification, and turbulence in the stable boundary layer. J. Atmos. Sci., 72, 31783198, https://doi.org/10.1175/JAS-D-14-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 1991: Sporadic breakdowns of stability in the PBL over simple and complex terrain. Bound.-Layer Meteor., 54, 6987, https://doi.org/10.1007/BF00119413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlow, M., M. B. Parlange, and F. Porté-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225248, https://doi.org/10.1023/A:1018909000098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, E. L., N. G. Mortensen, L. Landberg, J. Højstrup, and H. P. Frank, 1998: Wind power meteorology. Part I: Climate and turbulence. Wind Energy, 1, 2545, https://doi.org/10.1002/(SICI)1099-1824(199809)1:1<2::AID-WE15>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruitt, W., D. Morgan, and F. Lourence, 1973: Momentum and mass transfers in the surface boundary layer. Quart. J. Roy. Meteor. Soc., 99, 370386, https://doi.org/10.1002/qj.49709942014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, P., 1996: The effect of vertical resolution on clear-sky radiation calculations: Tests with two schemes. Tellus, 48A, 403423, https://doi.org/10.3402/tellusa.v48i3.12068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReVelle, D. O., 1993: Chaos and “bursting” in the planetary boundary layer. J. Appl. Meteor., 32, 11691180, https://doi.org/10.1175/1520-0450(1993)032<1169:CAITPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, E. S., H. Liu, Z. Gao, B. Lamb, and N. Wagenbrenner, 2016: Turbulence dependence on winds and stability in a weak-wind canopy sublayer over complex terrain. J. Geophys. Res. Atmos., 121, 11 50211 515, https://doi.org/10.1002/2016JD025057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmond, J., and I. McKendry, 2005: A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog. Phys. Geogr., 29, 171188, https://doi.org/10.1191/0309133305pp442ra.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, https://doi.org/10.1002/jame.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staley, D., and G. Jurica, 1972: Effective atmospheric emissivity under clear skies. J. Appl. Meteor., 11, 349356, https://doi.org/10.1175/1520-0450(1972)011<0349:EAEUCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G.-J., 2014: Current challenges in understanding and forecasting stable boundary layers over land and ice. Front. Environ. Sci., 2, 41, https://doi.org/10.3389/fenvs.2014.00041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. Van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935, https://doi.org/10.1175/JAS3654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, https://doi.org/10.1023/A:1019969131774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2004: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279, https://doi.org/10.1023/A:1026097926169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, C. Nappo, and D. H. Lenschow, 2015: Wind and temperature oscillations generated by wave–turbulence interactions in the stably stratified boundary layer. J. Atmos. Sci., 72, 14841503, https://doi.org/10.1175/JAS-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. H. Lenschow, M. A. LeMone, and L. Mahrt, 2016: The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations. Bound.-Layer Meteor., 160, 83111, https://doi.org/10.1007/s10546-016-0134-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1931: Effect of variation in density on the stability of superposed streams of fluid. Proc. Roy. Soc. London, 132A, 499523, https://doi.org/10.1098/rspa.1931.0115.

    • Search Google Scholar
    • Export Citation
  • Taylor, P., 1971: A note on the log-linear velocity profile in stable conditions. Quart. J. Roy. Meteor. Soc., 97, 326329, https://doi.org/10.1002/qj.49709741308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2005: Modelling the arctic boundary layer: An evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Bound.-Layer Meteor., 117, 337381, https://doi.org/10.1007/s10546-004-7954-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, S. J. A., P. Baas, J. Antoon van Hooft, I. G. S. van Hooijdonk, F. C. Bosveld, and B. J. H. van de Wiel, 2017: Local characteristics of the nocturnal boundary layer in response to external pressure forcing. J. Appl. Meteor. Climatol., 56, 30353047, https://doi.org/10.1175/JAMC-D-17-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. H. J., R. Ronda, A. F. Moene, H. De Bruin, and A. Holtslag, 2002a: Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: A bulk model. J. Atmos. Sci., 59, 942958, https://doi.org/10.1175/1520-0469(2002)059<0942:ITAOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. H. J., A. F. Moene, R. Ronda, H. De Bruin, and A. Holtslag, 2002b: Intermittent turbulence and oscillations in the stable boundary layer over land. Part II: A system dynamics approach. J. Atmos. Sci., 59, 25672581, https://doi.org/10.1175/1520-0469(2002)059<2567:ITAOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. H. J., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274, https://doi.org/10.1007/s10494-007-9094-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. H. J., A. F. Moene, and H. J. J. Jonker, 2012a: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, https://doi.org/10.1175/JAS-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. H. J., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012b: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127, https://doi.org/10.1175/JAS-D-12-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. H. J., and Coauthors, 2017: Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci., 74, 10571073, https://doi.org/10.1175/JAS-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Driest, E. R., 1951: On turbulent flow near a wall. J. Aeronaut. Sci., 18, 145160, https://doi.org/10.2514/8.1895.

  • Van Hooijdonk, I. G. S., J. M. Donda, H. J. Clercx, F. C. Bosveld, and B. J. van de Wiel, 2015: Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci., 72, 15181532, https://doi.org/10.1175/JAS-D-14-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Hooijdonk, I. G. S., and Coauthors, 2017: Near-surface temperature inversion growth rate during the onset of the stable boundary layer. J. Atmos. Sci., 74, 34333449, https://doi.org/10.1175/JAS-D-17-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995, Springer, 39–69.

    • Crossref
    • Export Citation
  • Vignon, E., and Coauthors, 2017: Stable boundary-layer regimes at Dome C, Antarctica: Observation and analysis. Quart. J. Roy. Meteor. Soc., 143, 12411253, https://doi.org/10.1002/qj.2998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, https://doi.org/10.1002/qj.49712555904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2014: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev., 7, 361386, https://doi.org/10.5194/gmd-7-361-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, J. T., R. T. McNider, X. Shi, W. B. Norris, and J. R. Christy, 2007: Positive surface temperature feedback in the stable nocturnal boundary layer. Geophys. Res. Lett., 34, L12709, https://doi.org/10.1029/2007GL029505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, https://doi.org/10.1002/qj.49709640708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A., S. Chambers, and A. Griffiths, 2013: Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Bound.-Layer Meteor., 149, 381402, https://doi.org/10.1007/s10546-013-9849-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 473 128 11
PDF Downloads 343 59 5