The Universality of the Normalized Vertical Velocity Variance in Contrast to the Horizontal Velocity Variance in the Convective Boundary Layer

Bowen Zhou Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Bowen Zhou in
Current site
Google Scholar
PubMed
Close
,
Shiwei Sun Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Shiwei Sun in
Current site
Google Scholar
PubMed
Close
,
Jianning Sun School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Jianning Sun in
Current site
Google Scholar
PubMed
Close
, and
Kefeng Zhu Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Kefeng Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The vertical turbulent velocity variance normalized by the convective velocity squared as a function of the boundary layer depth–normalized height [i.e., ] in the convective boundary layer (CBL) over a homogeneous surface exhibits a near-universal profile, as demonstrated by field observations, laboratory experiments, and numerical simulations. The profile holds over a wide CBL stability range set by the friction velocity, CBL depth, and surface heating. In contrast, the normalized horizontal turbulent velocity variance increases monotonically with decreasing stability. This study investigates the independence of the profile to changes in CBL stability, or more precisely, wind shear. Large-eddy simulations of several convective and neutral cases are performed by varying surface heating and geostrophic winds. Analysis of the turbulent kinetic energy budgets reveals that the conversion term between and depends almost entirely on buoyancy. This explains why does not vary with shear, which is a source to only. Further analysis through rotational and divergent decomposition suggests that the near-universal profile of is fundamentally related to the dynamics and interactions of local and nonlocal CBL turbulence. Specifically, the preferential interactions between local wavenumbers and the downscale energy cascade of CBL turbulence offer plausible explanations to the universal profile of .

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kefeng Zhu, kefeng@nju.edu.cn

Abstract

The vertical turbulent velocity variance normalized by the convective velocity squared as a function of the boundary layer depth–normalized height [i.e., ] in the convective boundary layer (CBL) over a homogeneous surface exhibits a near-universal profile, as demonstrated by field observations, laboratory experiments, and numerical simulations. The profile holds over a wide CBL stability range set by the friction velocity, CBL depth, and surface heating. In contrast, the normalized horizontal turbulent velocity variance increases monotonically with decreasing stability. This study investigates the independence of the profile to changes in CBL stability, or more precisely, wind shear. Large-eddy simulations of several convective and neutral cases are performed by varying surface heating and geostrophic winds. Analysis of the turbulent kinetic energy budgets reveals that the conversion term between and depends almost entirely on buoyancy. This explains why does not vary with shear, which is a source to only. Further analysis through rotational and divergent decomposition suggests that the near-universal profile of is fundamentally related to the dynamics and interactions of local and nonlocal CBL turbulence. Specifically, the preferential interactions between local wavenumbers and the downscale energy cascade of CBL turbulence offer plausible explanations to the universal profile of .

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kefeng Zhu, kefeng@nju.edu.cn
Save
  • Adrian, R. J., R. T. D. S. Ferreira, and T. Boberg, 1986: Turbulent thermal convection in wide horizontal fluid layers. Exp. Fluids, 4, 121141, https://doi.org/10.1007/BF00280263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., R. K. Newsom, and D. D. Turner, 2017: Year-long vertical velocity statistics derived from Doppler lidar data for the continental convective boundary layer. J. Appl. Meteor. Climatol., 56, 24412454, https://doi.org/10.1175/JAMC-D-16-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buechler, D., and H. Fuelberg, 1986: Budgets of divergent and rotational kinetic-energy during 2 periods of intense convection. Mon. Wea. Rev., 114, 95114, https://doi.org/10.1175/1520-0493(1986)114<0095:BODARK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., L. Ran, and N. Li, 2014: An application of the Helmholtz theorem in extracting the externally induced deformation field from the total wind field in a limited domain. Mon. Wea. Rev., 142, 20602066, https://doi.org/10.1175/MWR-D-13-00311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardesa, J. I., A. Vela-Martin, and J. Jimenez, 2017: The turbulent cascade in five dimensions. Science, 357, 782784, https://doi.org/10.1126/science.aan7933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary-layer. Quart. J. Roy. Meteor. Soc., 105, 811827, https://doi.org/10.1002/qj.49710544606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and A. C. Wiin-Nielsen, 1976: On the kinetic energy of the divergent and nondivergent flow in the atmosphere. Tellus, 28, 486498, https://doi.org/10.3402/tellusa.v28i6.11317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., J. C. Alpert, and T. W. Schlatter, 1978: The effects of divergent and nondivergent winds on the kinetic energy budget of a mid-latitude cyclone: A case study. Mon. Wea. Rev., 106, 458468, https://doi.org/10.1175/1520-0493(1978)106<0458:TEODAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., S. D. Mayor, C. J. Grund, T. M. Weckwerth, and C. Senff, 1998: The Lidars in Flat Terrain (LIFT) experiment. Bull. Amer. Meteor. Soc., 79, 13291344, https://doi.org/10.1175/1520-0477(1998)079<1329:TLIFTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Theoretical expression for the countergradient vertical heat flux. J. Geophys. Res., 77, 59005904, https://doi.org/10.1029/JC077i030p05900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199226, https://doi.org/10.1007/BF00227913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fedorovich, E., R. Kaiser, M. Rau, and E. Plate, 1996: Wind tunnel study of turbulent flow structure in the convective boundary layer capped by a temperature inversion. J. Atmos. Sci., 53, 12731289, https://doi.org/10.1175/1520-0469(1996)053<1273:WTSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., and G. D. Nastrom, 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729740, https://doi.org/10.1175/1520-0469(1986)043<0729:TIOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, J. R., and J. P. Mellado, 2014: The two-layer structure of the entrainment zone in the convective boundary layer. J. Atmos. Sci., 71, 19351955, https://doi.org/10.1175/JAS-D-13-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibbs, J. A., and E. Fedorovich, 2014: Comparison of convective boundary layer velocity spectra retrieved from large-eddy-simulation and Weather Research and Forecasting Model data. J. Appl. Meteor. Climatol., 53, 377394, https://doi.org/10.1175/JAMC-D-13-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinze, R., D. Mironov, and S. Raasch, 2015: Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study. J. Adv. Model. Earth Syst., 7, 510536, https://doi.org/10.1002/2014MS000376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellsten, A., and S. Zilitinkevich, 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Bound.-Layer Meteor., 149, 323353, https://doi.org/10.1007/s10546-013-9854-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibberd, M. F., and B. L. Sawford, 1994: A saline laboratory model of the planetary convective boundary layer. Bound.-Layer Meteor., 67, 229250, https://doi.org/10.1007/BF00713143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. M., and C.-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698, https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., J. C. Kaimal, and J. E. Gaynor, 1988: Eddy structure in the convective boundary layer—New measurements and new concepts. Quart. J. Roy. Meteor. Soc., 114, 827858, https://doi.org/10.1002/qj.49711448202.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 304 pp.

    • Crossref
    • Export Citation
  • Krishnamurti, T. N., and Y. Ramanathan, 1982: Sensitivity of the monsoon onset to differential heating. J. Atmos. Sci., 39, 12901306, https://doi.org/10.1175/1520-0469(1982)039<1290:SOTMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, R., and R. J. Adrian, 1986: Higher order moments in the entrainment zone of turbulent penetrative thermal convection. J. Heat Transfer, 108, 323329, https://doi.org/10.1115/1.3246923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., Y. Zhang, and S. A. Klein, 2018: Observed boundary layer controls on shallow cumulus at the ARM Southern Great Plains site. J. Atmos. Sci., 75, 22352255, https://doi.org/10.1175/JAS-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and E. M. Agee, 1976: Preliminary results from the Air Mass Transformation Experiment (AMTEX). Bull. Amer. Meteor. Soc., 57, 13461355, https://doi.org/10.1175/1520-0477-57.11.1346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326, https://doi.org/10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., M. Lothon, S. D. Mayor, P. P. Sullivan, and G. Canut, 2012: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteor., 143, 107123, https://doi.org/10.1007/s10546-011-9615-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, and S. D. Mayor, 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521536, https://doi.org/10.1007/s10546-006-9077-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, A., J. D. Scheel, and J. Schumacher, 2018: Turbulent superstructures in Rayleigh-Bénard convection. Nat. Commun., 9, 2118, https://doi.org/10.1038/s41467-018-04478-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2017: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteor., 163, 4168, https://doi.org/10.1007/s10546-016-0220-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary-layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci., 70, 32483261, https://doi.org/10.1175/JAS-D-12-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

    • Crossref
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiin-Nielsen, A., 1968: On the intensity of the general circulation of the atmosphere. Rev. Geophys., 6, 559579, https://doi.org/10.1029/RG006i004p00559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31, 12971307, https://doi.org/10.1175/1520-0469(1974)031<1297:ALMOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wipperman, F., 1957: Die transformation potentielles und innerer energie in die energie rotorloser und diejenige divergenzfreier bewegungen. Beitr. Phys. Atmos., 29, 269275.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 406 pp.

    • Crossref
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, https://doi.org/10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., 1988: Turbulence structure of the convective boundary layer. Part II. Phoenix 78 aircraft observations of thermals and their environment. J. Atmos. Sci., 45, 727735, https://doi.org/10.1175/1520-0469(1988)045<0727:TSOTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and B. Albrecht, 2003: Large eddy simulations of continental shallow cumulus convection. J. Geophys. Res., 108, 4453, https://doi.org/10.1029/2002JD003119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., V. M. Gryanik, V. N. Lykossov, and D. V. Mironov, 1999: Third-order transport and nonlocal turbulence closures for convective boundary layers. J. Atmos. Sci., 56, 34633477, https://doi.org/10.1175/1520-0469(1999)056<3463:TOTANT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1215 439 35
PDF Downloads 789 162 13