Response of Surface Wind Divergence to Mesoscale SST Anomalies under Different Wind Conditions

A. Foussard LMD/IPSL, CNRS, Ecole Polytechnique, Ecole Normale Supérieure, Sorbonne Université, Paris, and Ecole des Ponts ParisTech, Champs-sur-Marne, France

Search for other papers by A. Foussard in
Current site
Google Scholar
PubMed
Close
,
G. Lapeyre LMD/IPSL, CNRS, Ecole Polytechnique, Ecole Normale Supérieure, Sorbonne Université, Paris, France

Search for other papers by G. Lapeyre in
Current site
Google Scholar
PubMed
Close
, and
R. Plougonven LMD/IPSL, CNRS, Ecole Polytechnique, Ecole Normale Supérieure, Sorbonne Université, Paris, France

Search for other papers by R. Plougonven in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of the atmospheric boundary layer to mesoscale sea surface temperature (SST) is often characterized by a link between wind stress divergence and downwind SST gradients. In this study, an idealized simulation representative of a storm track above a prescribed stationary SST field is examined in order to determine in which background wind conditions that relationship occurs. The SST field is composed of a midlatitude large-scale frontal zone and mesoscale SST anomalies. It is shown that the divergence of the surface wind can correlate either with the Laplacian of the atmospheric boundary layer temperature or with the downwind SST gradient. The first case corresponds to background situations of weak winds or of unstable boundary layers, and the response is in agreement with an Ekman balance adjustment in the boundary layer. The second case corresponds to background situations of stable boundary layers, and the response is in agreement with downward mixing of momentum. Concerning the divergence of the wind stress, it generally resembles downwind SST gradients for stable and unstable boundary layers, in agreement with past studies. For weak winds, a correlation with the temperature Laplacian is, however, found to some extent. In conclusion, our study reveals the importance of the large-scale wind conditions in modulating the surface atmospheric response with different responses in the divergences of surface wind and wind stress.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Lapeyre, glapeyre@lmd.ens.fr

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

The response of the atmospheric boundary layer to mesoscale sea surface temperature (SST) is often characterized by a link between wind stress divergence and downwind SST gradients. In this study, an idealized simulation representative of a storm track above a prescribed stationary SST field is examined in order to determine in which background wind conditions that relationship occurs. The SST field is composed of a midlatitude large-scale frontal zone and mesoscale SST anomalies. It is shown that the divergence of the surface wind can correlate either with the Laplacian of the atmospheric boundary layer temperature or with the downwind SST gradient. The first case corresponds to background situations of weak winds or of unstable boundary layers, and the response is in agreement with an Ekman balance adjustment in the boundary layer. The second case corresponds to background situations of stable boundary layers, and the response is in agreement with downward mixing of momentum. Concerning the divergence of the wind stress, it generally resembles downwind SST gradients for stable and unstable boundary layers, in agreement with past studies. For weak winds, a correlation with the temperature Laplacian is, however, found to some extent. In conclusion, our study reveals the importance of the large-scale wind conditions in modulating the surface atmospheric response with different responses in the divergences of surface wind and wind stress.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: G. Lapeyre, glapeyre@lmd.ens.fr

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save
  • Ayet, A., and J.-L. Redelsperger, 2019: An analytical study of the atmospheric boundary layer flow and divergence over a SST front. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3578, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourras, D., G. Reverdin, H. Giordani, and G. Caniaux, 2004: Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res., 109, D18114, https://doi.org/10.1029/2004JD004799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 18471853, https://doi.org/10.1175/JCLI-D-11-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 18721890, https://doi.org/10.1175/JAS-D-14-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Jia, and Q. Liu, 2017: Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J. Oceanogr., 73, 295307, https://doi.org/10.1007/s10872-016-0403-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doglioli, A. M., B. Blanke, S. Speich, and G. Lapeyre, 2007: Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res., 112, C05043, https://doi.org/10.1029/2006JC003952.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961981, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foussard, A., G. Lapeyre, and R. Plougonven, 2019: Storm tracks response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445463, https://doi.org/10.1175/JCLI-D-18-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, S., M. McPhaden, and J. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 15001506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Kilpatrick, T., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 16981718, https://doi.org/10.1175/JCLI-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric response to a midlatitude SST front: Alongfront winds. J. Atmos. Sci., 73, 34893509, https://doi.org/10.1175/JAS-D-15-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res. Atmos., 118, 96119621, https://doi.org/10.1002/jgrd.50769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2017: Surface quasi-geostrophy. Fluids, 2, 7, https://doi.org/10.3390/fluids2010007.

  • Lapeyre, G., and P. Klein, 2006: Impact of the small-scale elongated filaments on the oceanic vertical pump. J. Mar. Res., 64, 835851, https://doi.org/10.1357/002224006779698369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J.-W., and S.-P. Zhang, 2013: Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26, 86168627, https://doi.org/10.1175/JCLI-D-12-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 63136330, https://doi.org/10.1002/2014JD022930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, A., and A. Wirth, 2016: Momentum transfer between an atmospheric and an oceanic layer at the synoptic and the mesoscale: An idealized numerical study. Bound.-Layer Meteor., 160, 551568, https://doi.org/10.1007/s10546-016-0153-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, https://doi.org/10.1175/2780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, https://doi.org/10.1175/JCLI-D-11-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 23832412, https://doi.org/10.1175/JAS-D-16-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oerder, V., F. Colas, V. Echevin, S. Masson, and F. Lemarié, 2018: Impacts of the mesoscale ocean-atmosphere coupling on the Peru-Chile ocean dynamics: The current-induced wind stress modulation. J. Geophys. Res. Oceans, 123, 812833, https://doi.org/10.1002/2017JC013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K., P. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, https://doi.org/10.1029/2005JC003090.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., S. P. De Szoeke, D. B. Chelton, R. M. Samelson, E. D. Skyllingstad, and L. W. O’Neill, 2014: Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon. Wea. Rev., 142, 42844307, https://doi.org/10.1175/MWR-D-13-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Foussard, and G. Lapeyre, 2018: Comments on “The Gulf Stream convergence zone in the time-mean winds.” J. Atmos. Sci., 75, 21392149, https://doi.org/10.1175/JAS-D-17-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, https://doi.org/10.1016/j.dynatmoce.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R., E. Skyllingstad, D. Chelton, S. Esbensen, L. O’Neill, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566, https://doi.org/10.1175/JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. Qiu, 2015: The atmospheric response to weak sea surface temperature fronts. J. Atmos. Sci., 72, 33563377, https://doi.org/10.1175/JAS-D-14-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, T., and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys. Res. Lett., 38, L06704, https://doi.org/10.1029/2010GL046625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, https://doi.org/10.1007/s10546-006-9127-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Q., D. B. Chelton, S. K. Esbensen, N. Thum, and L. W. O’Neill, 2009: Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Climate, 22, 146164, https://doi.org/10.1175/2008JCLI2488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801, https://doi.org/10.1175/JCLI4234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1965: Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res. Oceanogr. Abstr., 12, 355367, https://doi.org/10.1016/0011-7471(65)90007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1989: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Takatama, K., and N. Schneider, 2017: The role of back pressure in the atmospheric response to surface stress induced by the Kuroshio. J. Atmos. Sci., 74, 597615, https://doi.org/10.1175/JAS-D-16-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takatama, K., S. Minobe, M. Inatsu, and R. J. Small, 2015: Diagnostics for near-surface wind response to the Gulf Stream in a regional atmospheric model. J. Climate, 28, 238255, https://doi.org/10.1175/JCLI-D-13-00668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, https://doi.org/10.1175/BAMS-85-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6308 4891 222
PDF Downloads 1127 203 9