The Outflow–Rainband Relationship Induced by Environmental Flow around Tropical Cyclones

Yi Dai Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Yi Dai in
Current site
Google Scholar
PubMed
Close
,
Sharanya J. Majumdar Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Sharanya J. Majumdar in
Current site
Google Scholar
PubMed
Close
, and
David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the role of the asymmetric interaction between the tropical cyclone (TC) and the environmental flow in governing the TC inner-core asymmetric structure. Motivated by the limitations of bulk measures of vertical wind shear in representing the complete environmental flow, the TC outflow is used as a focus for the asymmetric interaction. By analyzing an idealized numerical simulation, it is demonstrated that parcels can go directly from the asymmetric rainband to the upper-level outflow. The relatively large vertical mass flux in the rainband region also suggests that the asymmetric rainband is an important source of the outflow. In a simulation that suppresses convection by reducing the water vapor within the rainband region, the upper-level outflow is weakened, further supporting the hypothesis that the rainband and outflow are directly connected. Finally, it is demonstrated that the asymmetric outflow and the outer rainband are coupled through the descending inflow below the outflow. Some of the main characteristics of the outflow–rainband relationship are also supported by a real-case numerical simulation of Hurricane Bill (2009). The relationship is potentially useful for understanding and predicting the evolution of the TC inner-core structure during the interaction with the large-scale environmental flow.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Dai, ydai@rsmas.miami.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

This study investigates the role of the asymmetric interaction between the tropical cyclone (TC) and the environmental flow in governing the TC inner-core asymmetric structure. Motivated by the limitations of bulk measures of vertical wind shear in representing the complete environmental flow, the TC outflow is used as a focus for the asymmetric interaction. By analyzing an idealized numerical simulation, it is demonstrated that parcels can go directly from the asymmetric rainband to the upper-level outflow. The relatively large vertical mass flux in the rainband region also suggests that the asymmetric rainband is an important source of the outflow. In a simulation that suppresses convection by reducing the water vapor within the rainband region, the upper-level outflow is weakened, further supporting the hypothesis that the rainband and outflow are directly connected. Finally, it is demonstrated that the asymmetric outflow and the outer rainband are coupled through the descending inflow below the outflow. Some of the main characteristics of the outflow–rainband relationship are also supported by a real-case numerical simulation of Hurricane Bill (2009). The relationship is potentially useful for understanding and predicting the evolution of the TC inner-core structure during the interaction with the large-scale environmental flow.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Dai, ydai@rsmas.miami.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. S., and W. M. Gray, 1985: Global view of the upper level outflow pattern associated with tropical cyclone intensity changes during FGGE. Colorado State University Dept. of Atmospheric Science Paper 392, 120 pp.

  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow–jet interaction. J. Atmos. Sci., 74, 19411958, https://doi.org/10.1175/JAS-D-16-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., P. D. Reasor, R. F. Rogers, and W. Lee, 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 29092929, https://doi.org/10.1175/JAS-D-17-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., J. Molinari, and D. Vollaro, 2017: Tropical cyclone outflow-layer structure and balanced response to eddy forcings. J. Atmos. Sci., 74, 133149, https://doi.org/10.1175/JAS-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 1960.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and S. J. Majumdar, 2017: The predictability of idealized tropical cyclones in environments with time-varying vertical wind shear. J. Adv. Model. Earth Syst., 9, 28362862, https://doi.org/10.1002/2017MS001168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interaction between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear: I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and D. S. Nolan, 2019: SFMR surface wind undersampling over the tropical cyclone life cycle. Mon. Wea. Rev., 147, 247268, https://doi.org/10.1175/MWR-D-18-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105, https://doi.org/10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1990: External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47, 19021918, https://doi.org/10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2014: Symmetric instability in the outflow layer of a major hurricane. J. Atmos. Sci., 71, 37393746, https://doi.org/10.1175/JAS-D-14-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2015: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part I: Structures and comparisons to observations. J. Atmos. Sci., 72, 164190, https://doi.org/10.1175/JAS-D-14-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF Model. J. Adv. Model. Earth Syst., 5, 382405, https://doi.org/10.1002/jame.20031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, 908931, https://doi.org/10.1002/2016MS000796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1987: Numerical experiments of steady and transient jets with simple model of the hurricane outflow layer. Preprints, 17th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 318–320.

  • Peirano, C. M., K. L. Corbosiero, and B. H. Tang, 2016: Revisiting trough interactions and tropical cyclone intensity change. Geophys. Res. Lett., 43, 55095515, https://doi.org/10.1002/2016GL069040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 23932398, https://doi.org/10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599, https://doi.org/10.1175//2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, https://doi.org/10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, https://doi.org/10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J.-J., S. W.-J. Chang, and S. Raman, 1990: A numerical study of the outflow layer of tropical cyclones. Mon. Wea. Rev., 118, 20422055, https://doi.org/10.1175/1520-0493(1990)118<2042:ANSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1977: Baroclinic instability on the sphere: Solutions with a more realistic tropopause. J. Atmos. Sci., 34, 581588, https://doi.org/10.1175/1520-0469(1977)034<0581:BIOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and P. E. Ciesielski, 1986: Inertial instability of horizontally sheared flow away from the equator. J. Atmos. Sci., 43, 28452856, https://doi.org/10.1175/1520-0469(1986)043<2845:IIOHSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173196, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9501 6996 269
PDF Downloads 962 152 24