• Baker, I., A. Denning, N. Hanan, L. Prihodko, M. Uliasz, P. Vidale, K. Davis, and P. Bakwin, 2003: Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5. Global Change Biol., 9, 12621277, https://doi.org/10.1046/j.1365-2486.2003.00671.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakwin, P., P. P. Tans, D. Hurst, and C. Zhao, 1998: Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus, 50B, 401415, https://doi.org/10.3402/tellusb.v50i5.16216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basha, H. A., and F. S. El-Habel, 1993: Analytical solution of the one-dimensional time-dependent transport equation. Water Resour. Res., 29, 32093214, https://doi.org/10.1029/93WR01038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G., 2000: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

    • Crossref
    • Export Citation
  • Bateman, H., 1954: Tables of Integral Transforms. Vol. 1, A. Erdelyi, Ed., McGraw-Hill, 391 pp.

  • Bruhwiler, L., A. Michalak, W. Peters, D. F. Baker, and P. Tans, 2005: An improved Kalman smoother for atmospheric inversions. Atmos. Chem. Phys., 5, 26912702, https://doi.org/10.5194/acp-5-2691-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, M., K. Davis, A. Denning, and S. Kawa, 2010: Using continental observations in global atmospheric inversions of CO2: North American carbon sources and sinks. Tellus, 62B, 550572, https://doi.org/10.1111/j.1600-0889.2010.00501.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., J. M. Chen, J. Liu, D. Chan, K. Higuchi, and A. Shashkov, 2004: A vertical diffusion scheme to estimate the atmospheric rectifier effect. J. Geophys. Res., 109, D04306, https://doi.org/10.1029/2003JD003925.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and C. Liu, 2011: Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol. Earth Syst. Sci., 15, 24712479, https://doi.org/10.5194/hess-15-2471-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daley, D., 1993: Atmospheric Data Assimilation. Cambridge University Press, 457 pp.

  • Davis, K., P. Bakwin, C. Yi, B. Berger, C. Zhao, R. M. Teclaw, and J. G. Isenbrands, 2003: The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Global Change Biol., 9, 12781293, https://doi.org/10.1046/j.1365-2486.2003.00672.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denning, A. S., G. J. Collatz, C. Zhang, D. A. Randall, J. A. Berry, P. J. Sellers, G. D. Colello, and D. A. Dazlich, 1996a: Simulations of terrestrial carbon metabolism and atmospheric co2 in a general circulation model. Part 1: Surface carbon fluxes. Tellus, 48B, 521542, https://doi.org/10.3402/tellusb.v48i4.15930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denning, A. S., D. A. Randall, G. J. Collatz, and P. J. Sellers, 1996b: Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: Simulated CO2 concentrations. Tellus, 48B, 543567, https://doi.org/10.3402/tellusb.v48i4.15931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fung, I., K. Prentice, E. Matthews, J. Lerner, and G. Russell, 1983: Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res., 88, 12811294, https://doi.org/10.1029/JC088iC02p01281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerritsen, K. O., 2012: Estimation of advective fluxes from CO2 flux profile observations at the Cabauw Tower. Tech. Rep. TR-330, Royal Netherlands Meteorological Institute, 72 pp., http://bibliotheek.knmi.nl/knmipubTR/TR330.pdf.

  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 297 pp.

  • Gloor, M., S. M. Fan, S. W. Pacala, J. L. Sarmiento, and M. Ramonet, 1999: A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale. J. Geophys. Res., 104, 14 24514 260, https://doi.org/10.1029/1999JD900132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenberg, M., 1971: Application of Green’s Functions in Science and Engineering. Prentice-Hall, 141 pp.

  • Gurney, K. R., and Coauthors, 2003: TransCom 3 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, 55B, 555579, https://doi.org/10.3402/tellusb.v55i2.16728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurney, K. R., and Coauthors, 2004: TransCom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles, 18, GB1010, https://doi.org/10.1029/2003GB002111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698, https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus non-local boundary-layer diffusion on a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, M., 1999: Analysis of passive tracer transport as modeled by an atmospheric general circulation model. J. Climate, 12, 16591684, https://doi.org/10.1175/1520-0442(1999)012<1659:AOPTTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, M., and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical flows. J. Atmos. Sci., 57, 35393558, https://doi.org/10.1175/1520-0469(2000)057<3539:TTATAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houweling, S., and Coauthors, 2010: The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements. Atmos. Chem. Phys., 10, 99819992, https://doi.org/10.5194/acp-10-9981-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurwitz, M., D. Ricciuto, P. Bakwin, K. Davis, W. Wang, C. Yi, and M. Butler, 2004: Transport of carbon dioxide in the presence of storm systems over a northern Wisconsin forest. J. Atmos. Sci., 61, 607618, https://doi.org/10.1175/1520-0469(2004)061<0607:TOCDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiswal, D. K., A. Kumar, and R. R. Yadav, 2011: Analytical solution to the one-dimensional advection0diffusion equation with temporally dependent coefficients. J. Water Resource Prot., 3, 7684, https://doi.org/10.4236/jwarp.2011.31009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, R., C. Gerbig, U. Karstens, and F.-T. Koch, 2012: Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM. Atmos. Chem. Phys., 12, 24412458, https://doi.org/10.5194/acp-12-2441-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, V. E., and H. Volkmer, 2008: An idealized model of the one-dimensional carbon dioxide rectifier effect. Tellus, 60B, 525536, https://doi.org/10.1111/j.1600-0889.2008.00368.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation. Agric. For. Meteor., 91, 3949, https://doi.org/10.1016/S0168-1923(98)00071-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leij, F. J., E. Priesack, and M. G. Schaap, 2000: Solute transport modeled with Green’s functions with application to persistent solute sources. J. Contam. Hydrol., 41, 155173, https://doi.org/10.1016/S0169-7722(99)00062-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. C., and C. Gerbig, 2005: Accounting for the effect of transport errors on tracer inversions. Geophys. Res. Lett., 32, L01802, https://doi.org/10.1029/2004GL021127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., M. Tiedtkt, and J. F. Geleyn, 1982: A short history of the PBL parametrization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Shinfield Park, Reading, ECMWF, 59–79, https://www.ecmwf.int/node/10845.

  • Makar, P. A., R. Nissen, A. Teakles, J. Zhang, Q. Zheng, M. D. Moran, H. Yau, and C. diCenzo, 2014: Turbulent transport, emissions and the role of compensating errors in chemical transport models. Geosci. Model Dev., 7, 10011024, https://doi.org/10.5194/gmd-7-1001-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 12131215, https://doi.org/10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, W., and Coauthors, 2005: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, https://doi.org/10.1029/2005JD006157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peylin, P., D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet, 2002: Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data. J. Geophys. Res., 107, 4385, https://doi.org/10.1029/2001JD000857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pino, D., J. Vilà-Guerau de Arellano, W. Peters, J. Schröter, C. C. van Heerwaarden, and M. C. Krol, 2012: A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios. Atmos. Chem. Phys., 12, 29692985, https://doi.org/10.5194/acp-12-2969-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1996: Time scales in atmospheric chemistry: Theory, GWPS for CH4 and CO, and runaway growth. Geophys. Res. Lett., 23, 25972600, https://doi.org/10.1029/96GL02371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., and K. Gupta, 1984: Linear wave propagation in non-homogeneous viscoelastic semi-infinite rod. Indian J. Pure Appl. Math., 15 (2), 171186.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Springer Netherlands, 670 pp.

    • Crossref
    • Export Citation
  • Wang, W., K. Davis, B. D. Cook, P. S. Bakwin, C. Yi, M. P. Butler, and D. M. Ricciuto, 2005: Surface layer CO2 budget and advective contributions to measurements of net ecosystem–atmosphere exchange of CO2. Agric. For. Meteor., 135, 202214, https://doi.org/10.1016/j.agrformet.2005.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. T. Kiehl, V. Ramanatha, R. E. Dickinson, and J. J. Hack, 1987: Description of NCAR Community Climate Model (CCM1). NCAR Tech. Note NCAR/TN-285+STR, 112 pp., https://doi.org/10.5065/D6TB14WH.

    • Crossref
    • Export Citation
  • Wyngaard, J., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, C., K. J. Davis, P. S. Bakwin, B. W. Berger, and L. C. Marr, 2000: Influence of advection on measurements of the net ecosystem atmosphere exchange of CO2 from a very tall tower. J. Geophys. Res., 105, 99919999, https://doi.org/10.1029/2000JD900080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zoppou, C., and J. Knight, 1999: Analytical solution of a spatially variable coefficient advection-diffusion equation in up to three dimensions. Appl. Math. Model., 23, 667685, https://doi.org/10.1016/S0307-904X(99)00005-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 5 5 5

Solutions to the 3D Transport Equation and 1D Diffusion Equation for Passive Tracers in the Atmospheric Boundary Layer and Their Applications

View More View Less
  • 1 Environment and Climate Change Canada, Downsview, Ontario, Canada
Restricted access

Abstract

A solution to the 3D transport equation for passive tracers in the atmospheric boundary layer (ABL), formulated in terms of Green’s function (GF), is derived to show the connection between the concentration and surface fluxes of passive tracers through GF. Analytical solutions to the 1D vertical diffusion equation are derived to reveal the nonlinear dependence of the concentration and flux on the diffusivity, time, and height, and are employed to examine the impact of the diffusivity on the diurnal variations of CO2 in the ABL. The properties of transport operator H and their implications in inverse modeling are discussed. It is found that H has a significant contribution to the rectifier effect in the diurnal variations of CO2. Since H is the integral of GF in time, the narrow distribution of GF in time justifies the reduction of the size of H in inverse modeling. The exponential decay of GF with height suggests that the estimated surface fluxes in inverse modeling are more sensitive to the observations in the lower ABL. The solutions and first mean value theorem are employed to discuss the uncertainties associated with the concentration–mean surface flux equation used to link the concentrations and mean surface flux. Both analytical and numerical results show that the equation can introduce big errors, particularly when surface flux is sign indefinite. Numerical results show that the conclusions about the evolution properties of passive tracers based on the analytical solutions also hold in the cases with a more complicated diffusion coefficient and time-varying ABL height.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuzhan Ren, shuzhan.ren@canada.ca

Abstract

A solution to the 3D transport equation for passive tracers in the atmospheric boundary layer (ABL), formulated in terms of Green’s function (GF), is derived to show the connection between the concentration and surface fluxes of passive tracers through GF. Analytical solutions to the 1D vertical diffusion equation are derived to reveal the nonlinear dependence of the concentration and flux on the diffusivity, time, and height, and are employed to examine the impact of the diffusivity on the diurnal variations of CO2 in the ABL. The properties of transport operator H and their implications in inverse modeling are discussed. It is found that H has a significant contribution to the rectifier effect in the diurnal variations of CO2. Since H is the integral of GF in time, the narrow distribution of GF in time justifies the reduction of the size of H in inverse modeling. The exponential decay of GF with height suggests that the estimated surface fluxes in inverse modeling are more sensitive to the observations in the lower ABL. The solutions and first mean value theorem are employed to discuss the uncertainties associated with the concentration–mean surface flux equation used to link the concentrations and mean surface flux. Both analytical and numerical results show that the equation can introduce big errors, particularly when surface flux is sign indefinite. Numerical results show that the conclusions about the evolution properties of passive tracers based on the analytical solutions also hold in the cases with a more complicated diffusion coefficient and time-varying ABL height.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shuzhan Ren, shuzhan.ren@canada.ca
Save