Parameter Sweep Experiments on a Spectrum of Cyclones with Diabatic and Baroclinic Processes

Wataru Yanase Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Wataru Yanase in
Current site
Google Scholar
PubMed
Close
and
Hiroshi Niino Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

Search for other papers by Hiroshi Niino in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A wide range of environments that prevail over the globe generate various types of cyclones such as tropical, extratropical, and hybrid cyclones. In this paper, idealized numerical experiments are used to explore a spectrum of cyclones ranging from the diabatic type to the baroclinic type in a parameter space consisting of three environmental factors: temperature, vertical shear, and planetary vorticity. The experiments reproduce not only typical dynamics of tropical and extratropical cyclones but also their modified dynamics, which are consistent with theoretical studies; tropical cyclones are suppressed by vertical shear, while extratropical cyclones are intensified by condensational heating. The experiments also reproduce hybrid cyclones in environments with high temperature and large baroclinicity. The hybrid cyclones show multiscale dynamics in which synoptic-scale baroclinic systems spawn smaller-scale tropical cyclone–like convective cores. The spectrum of cyclones is found to be nonmonotonic in the parameter space because of a two-sided effect of the vertical shear: moderate shear weakens a tropical cyclone by tilting the small-scale vortex to the downshear, while strong shear develops a large-scale vortex of an extratropical cyclone or a hybrid cyclone through warm-air advection from the south. The indices based on the energetics and the symmetric and asymmetric structures overview the different types of cyclones in the parameter space. These parameter sweep experiments provide useful information on what environment is favorable for cyclones, particularly for intermediate environments where cyclone mechanisms are yet to be fully defined.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wataru Yanase, wtryanase@gmail.com

Abstract

A wide range of environments that prevail over the globe generate various types of cyclones such as tropical, extratropical, and hybrid cyclones. In this paper, idealized numerical experiments are used to explore a spectrum of cyclones ranging from the diabatic type to the baroclinic type in a parameter space consisting of three environmental factors: temperature, vertical shear, and planetary vorticity. The experiments reproduce not only typical dynamics of tropical and extratropical cyclones but also their modified dynamics, which are consistent with theoretical studies; tropical cyclones are suppressed by vertical shear, while extratropical cyclones are intensified by condensational heating. The experiments also reproduce hybrid cyclones in environments with high temperature and large baroclinicity. The hybrid cyclones show multiscale dynamics in which synoptic-scale baroclinic systems spawn smaller-scale tropical cyclone–like convective cores. The spectrum of cyclones is found to be nonmonotonic in the parameter space because of a two-sided effect of the vertical shear: moderate shear weakens a tropical cyclone by tilting the small-scale vortex to the downshear, while strong shear develops a large-scale vortex of an extratropical cyclone or a hybrid cyclone through warm-air advection from the south. The indices based on the energetics and the symmetric and asymmetric structures overview the different types of cyclones in the parameter space. These parameter sweep experiments provide useful information on what environment is favorable for cyclones, particularly for intermediate environments where cyclone mechanisms are yet to be fully defined.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wataru Yanase, wtryanase@gmail.com
Save
  • American Meteorological Society, 2019: Subtropical cyclone. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/Subtropical_cyclone.

  • Beljaars, A., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, https://doi.org/10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., and N. D. Metz, 2016: Tropical transition of an unnamed, high-latitude, tropical cyclone over the eastern North Pacific. Mon. Wea. Rev., 144, 713736, https://doi.org/10.1175/MWR-D-15-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., D. Keyser, and L. F. Bosart, 2016: A dynamically based climatology of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 144, 20492068, https://doi.org/10.1175/MWR-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., L. F. Bosart, and D. Keyser, 2017: Upper-tropospheric precursors to the formation of subtropical cyclones that undergo tropical transition in the North Atlantic basin. Mon. Wea. Rev., 145, 503520, https://doi.org/10.1175/MWR-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, https://doi.org/10.1007/s00382-012-1472-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., 2016: Extratropical cyclone classification and its use in climate studies. Rev. Geophys., 54, 486520, https://doi.org/10.1002/2016RG000519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., R. W. Moore, and M. T. Montgomery, 2007: Mesoscale convective vortex formation in a weakly sheared moist neutral environment. J. Atmos. Sci., 64, 14431466, https://doi.org/10.1175/JAS3898.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Rocha, R. P., M. S. Reboita, L. F. Gozzo, L. M. M. Dutra, and E. M. de Jesus, 2019: Subtropical cyclones over the oceanic basins: A review. Ann. N. Y. Acad. Sci., 1436, 138156, https://doi.org/10.1111/nyas.13927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2010: Simulations of subtropical cyclones in a baroclinic channel model. J. Atmos. Sci., 67, 28712892, https://doi.org/10.1175/2010JAS3411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662, https://doi.org/10.1175/BAMS-85-11-1657.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deveson, A. C. L., and K. A. Browning, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128, 93117, https://doi.org/10.1256/00359000260498806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 1989: Polar lows as Arctic hurricanes. Tellus, 41A, 117, https://doi.org/10.1111/j.1600-0870.1989.tb00362.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080, https://doi.org/10.1175/2009MWR2468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W., and E. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Colorado State University Dept. of Atmospheric Sciences Paper 234, 121 pp.

  • Guishard, M., J. Evans, and R. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, https://doi.org/10.1175/2008JCLI2346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1976: Baroclinic waves and frontogenesis part I: Introduction and Eady waves. Quart. J. Roy. Meteor. Soc., 102, 103122, https://doi.org/10.1002/qj.49710243109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009a: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part I: A six-case survey. Mon. Wea. Rev., 137, 36053625, https://doi.org/10.1175/2009MWR2802.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, A. L., and J. E. Martin, 2009b: Synoptic- and frontal-scale influences on tropical transition events in the Atlantic basin. Part II: Tropical transition of Hurricane Karen. Mon. Wea. Rev., 137, 36263650, https://doi.org/10.1175/2009MWR2803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. 1. Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, https://doi.org/10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J., and J. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309325, https://doi.org/10.2151/jmsj.2011-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2012: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 345 pp.

    • Crossref
    • Export Citation
  • Lambaerts, J., G. Lapeyre, and V. Zeitlin, 2012: Moist versus dry baroclinic instability in a simplified two-layer atmospheric model with condensation and latent heat release. J. Atmos. Sci., 69, 14051426, https://doi.org/10.1175/JAS-D-11-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 16931710, https://doi.org/10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., R. Farley, and H. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., 1982: On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39, 20282037, https://doi.org/10.1175/1520-0469(1982)039<2028:OMQGBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauk, R. G., and J. S. Hobgood, 2012: Tropical cyclone formation in environments with cool SST and high wind shear over the northeastern Atlantic Ocean. Wea. Forecasting, 27, 14331448, https://doi.org/10.1175/WAF-D-11-00048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau Jr., L. F. Bosart, W. M. Richard, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, https://doi.org/10.1175/MWR-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2004: Reexamining the dynamics of short-scale, diabatic Rossby waves and their role in midlatitude moist cyclogenesis. J. Atmos. Sci., 61, 754768, https://doi.org/10.1175/1520-0469(2004)061<0754:RTDOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725, https://doi.org/10.1175/JAS3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudrick, S. E., 1974: A numerical study of frontogenesis. J. Atmos. Sci., 31, 869892, https://doi.org/10.1175/1520-0469(1974)031<0869:ANSOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107128, https://doi.org/10.2151/jmsj1965.68.2_107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, https://doi.org/10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, I., 1986: Roles of the horizontal advection on the formation of surface fronts and on the occlusion of a cyclone developing in the baroclinic westerly jet. J. Meteor. Soc. Japan, 64, 329345, https://doi.org/10.2151/jmsj1965.64.3_329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueno, M., 2008: Effects of ambient vertical wind shear on the inner-core asymmetries and vertical tilt of a simulated tropical cyclone. J. Meteor. Soc. Japan, 86, 531555, https://doi.org/10.2151/jmsj.86.531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and A. Barcilon, 1986: Moist stability of a baroclinic zonal flow with conditionally unstable stratification. J. Atmos. Sci., 43, 705719, https://doi.org/10.1175/1520-0469(1986)043<0705:MSOABZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2015: Idealized numerical experiments on cyclone development in the tropical, subtropical, and extratropical environments. J. Atmos. Sci., 72, 36993714, https://doi.org/10.1175/JAS-D-15-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2018: Environmental control of tropical, subtropical, and extratropical cyclone development over the North Atlantic Ocean: Idealized numerical experiments. Quart. J. Roy. Meteor. Soc., 144, 539552, https://doi.org/10.1002/qj.3227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanase, W., H. Niino, K. I. Hodges, and N. Kitabatake, 2014: Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. J. Climate, 27, 652671, https://doi.org/10.1175/JCLI-D-13-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1618 1134 38
PDF Downloads 442 68 8