• Abarca, S. F., and M. T. Montgomery, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 8287, https://doi.org/10.1175/JAS-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 52395245, https://doi.org/10.1175/2008MWR2593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, https://doi.org/10.1175/2009JAS3038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetry numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, Y., N. Narnik, E. Heifetz, D. S. Nolan, D. Tao, and F. Zhang, 2017: On the violation of gradient wind balance at the top of tropical cyclones. Geophys. Res. Lett., 44, 80178026, https://doi.org/10.1002/2017GL074552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 19–60

  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49A, 784789, https://doi.org/10.2151/jmsj1965.49A.0_784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar (EDOP) investigations of the eyewall of Hurricane Bonnie during CAMEX-3. J. Appl. Meteor., 40, 13101330, https://doi.org/10.1175/1520-0450(2001)040<1310:EDRIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017: The role of boundary layer friction on tropical cyclogenesis and subsequent intensification. Quart. J. Roy. Meteor. Soc., 143, 25242536, https://doi.org/10.1002/qj.3104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 2559, https://doi.org/10.1175/1520-0469(1975)032<0025:BAOATC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1967: On wave generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids. J. Fluid Mech., 27, 725752, https://doi.org/10.1017/S0022112067002563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and L. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 18661881, https://doi.org/10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, https://doi.org/10.1175/JAS-D-11-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 26662681, https://doi.org/10.1175/JAS-D-14-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773450, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593, https://doi.org/10.1002/qj.237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and B. D. McNoldy, 2010: Application of the concepts of Rossby length and Rossby depth to tropical cyclone dynamics. J. Adv. Model. Earth Syst., 2 (3), https://doi.org/10.3894/JAMES.2010.2.7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1981: The cyclostrophic adjustment of vortices with application to tropical cyclone modification. J. Atmos. Sci., 38, 20212030, https://doi.org/10.1175/1520-0469(1981)038<2021:TCAOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, https://doi.org/10.1175/JAS-D-11-010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010): Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, https://doi.org/10.1029/JC084iC06p03173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018: Effect of the initial vortex structure on intensification of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 96, 111126, https://doi.org/10.2151/jmsj.2018-014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, https://doi.org/10.1175/JAS-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 6 6 6

Evolution of an Axisymmetric Tropical Cyclone before Reaching Slantwise Moist Neutrality

View More View Less
  • 1 Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Science, Nanjing University, Nanjing, China, and National Center for Atmospheric Research, Boulder, Colorado
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Key Laboratory for Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Science, Nanjing University, Nanjing, China
Restricted access

Abstract

In a previous study, the authors showed that the intensification process of a numerically simulated axisymmetric tropical cyclone (TC) can be divided into two periods denoted by “phase I” and “phase II.” The intensification process in phase II can be qualitatively described by Emanuel’s intensification theory in which the angular momentum (M) and saturated entropy (s*) surfaces are congruent in the TC interior. During phase I, however, the M and s* surfaces evolve from nearly orthogonal to almost congruent, and thus, the intensifying simulated TC has a different physical character as compared to that found in phase II. The present work uses a numerical simulation to investigate the evolution of an axisymmetric TC during phase I. The present results show that sporadic, deep convective annular rings play an important role in the simulated axisymmetric TC evolution in phase I. The convergence in low-level radial (Ekman) inflow in the boundary layer of the TC vortex, together with the increase of near-surface s* produced by sea surface fluxes, leads to episodes of convective rings around the TC center. These convective rings transport larger values of s* and M from the lower troposphere upward to the tropopause; the locally large values of M associated with the convective rings cause a radially outward bias in the upper-level radial velocity and an inward bias in the low-level radial velocity. Through a repetition of this process, the pattern (i.e., phase II) gradually emerges. The role of internal gravity waves related to the episodes of convection and the TC intensification process during phase I is also discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Juan Fang, fangjuan@nju.edu.cn

Abstract

In a previous study, the authors showed that the intensification process of a numerically simulated axisymmetric tropical cyclone (TC) can be divided into two periods denoted by “phase I” and “phase II.” The intensification process in phase II can be qualitatively described by Emanuel’s intensification theory in which the angular momentum (M) and saturated entropy (s*) surfaces are congruent in the TC interior. During phase I, however, the M and s* surfaces evolve from nearly orthogonal to almost congruent, and thus, the intensifying simulated TC has a different physical character as compared to that found in phase II. The present work uses a numerical simulation to investigate the evolution of an axisymmetric TC during phase I. The present results show that sporadic, deep convective annular rings play an important role in the simulated axisymmetric TC evolution in phase I. The convergence in low-level radial (Ekman) inflow in the boundary layer of the TC vortex, together with the increase of near-surface s* produced by sea surface fluxes, leads to episodes of convective rings around the TC center. These convective rings transport larger values of s* and M from the lower troposphere upward to the tropopause; the locally large values of M associated with the convective rings cause a radially outward bias in the upper-level radial velocity and an inward bias in the low-level radial velocity. Through a repetition of this process, the pattern (i.e., phase II) gradually emerges. The role of internal gravity waves related to the episodes of convection and the TC intensification process during phase I is also discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Juan Fang, fangjuan@nju.edu.cn
Save