• Back, L., and C. Bretherton, 2009: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497, https://doi.org/10.1175/2009JCLI2393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled walker circulation using the weak temperature gradient approximation. J. Climate, 15, 29072920, https://doi.org/10.1175/1520-0442(2002)015<2907:ASMOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. E. Peters, 2006: Interpretation of simple and cloud-resolving simulations of moist convection–radiation interaction with a mock-Walker circulation. Theor. Comput. Fluid Dyn., 20, 421442, https://doi.org/10.1007/s00162-006-0029-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and Y. Li, 2015: Tropical oceanic rainfall and sea surface temperature structure: Parsing causation from correlation in the MJO. J. Atmos. Sci., 72, 27032718, https://doi.org/10.1175/JAS-D-14-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and Coauthors, 2016: Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO. Bull. Amer. Meteor. Soc., 97, 405423, https://doi.org/10.1175/BAMS-D-13-00196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J.-I. Yano, and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 20222040, https://doi.org/10.1175/1520-0469(2000)057<2022:CRMOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H., and M. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2017: Multiscale variability of the atmospheric boundary layer during DYNAMO. J. Atmos. Sci., 74, 40034021, https://doi.org/10.1175/JAS-D-17-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, https://doi.org/10.1175/MWR3440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2012: Weakly forced mock Walker cells. J. Atmos. Sci., 69, 27592786, https://doi.org/10.1175/JAS-D-11-0307.1.

  • Li, T., C. Zhao, P. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 21212135, https://doi.org/10.1175/JCLI-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Atmos. Sci., 69, 29832994, https://doi.org/10.1175/JAS-D-11-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1957: Trade cumulus cloud groups: Some observations suggesting a mechanism of their origin. Tellus, 9, 3344, https://doi.org/10.3402/tellusa.v9i1.9071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1964: Cloud structure and distributions over the tropical Pacific Ocean. Tellus, 16, 275287, https://doi.org/10.1111/j.2153-3490.1964.tb00167.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E., and D. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, S., T. Li, and W. Chen, 2015: Three-type MJO initiation processes over the western equatorial Indian Ocean. Adv. Atmos. Sci., 32, 12081216, https://doi.org/10.1007/s00376-015-4201-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, M. D. Shupe, and P. Zuidema, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of Arctic clouds. J. Atmos. Sci., 62, 16781693, https://doi.org/10.1175/JAS3447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 11851199, https://doi.org/10.1175/BAMS-D-12-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., K. Pujiana, R. C. Lien, and W. D. Smyth, 2016: Ocean feedback to pulses of the Madden–Julian oscillation in the equatorial Indian Ocean. Nat. Commun., 7, 13203, https://doi.org/10.1038/ncomms13203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze, 2015: Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. Atmos., 120, 10 32410 350, https://doi.org/10.1002/2014JD022948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., 2016: Diurnal timescale feedbacks in the tropical cumulus regime. J. Adv. Model. Earth Syst., 8, 14831500, https://doi.org/10.1002/2016MS000713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, https://doi.org/10.1175/JAS-D-14-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and R. H. Johnson, 2016: On the cumulus diurnal cycle over the tropical warm pool. J. Adv. Model. Earth Syst., 8, 669690, https://doi.org/10.1002/2015MS000610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and T. G. Jensen, 2017: Oceanic impetus for convective onset of the Madden–Julian oscillation in the western Indian Ocean. J. Climate, 30, 42994316, https://doi.org/10.1175/JCLI-D-16-0595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., T. G. Jensen, and E. S. Nyadjro, 2017: Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves. Geophys. Res. Lett., 44, 42244232, https://doi.org/10.1002/2017GL073331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H., and A. Kumar, 2008: The onset and life span of the Madden–Julian oscillation. Theor. Appl. Climatol., 94, 1324, https://doi.org/10.1007/s00704-007-0340-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, L., 1952: On the scalar-vorticity and horizontal-divergence equations. J. Meteor., 9, 359366, https://doi.org/10.1175/1520-0469(1952)009<0359:OTSVAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., 1979: Vorticity, momentum and divergence budgets of synoptic-scale wave disturbances in the tropical eastern Atlantic. Mon. Wea. Rev., 107, 535550, https://doi.org/10.1175/1520-0493(1979)107<0535:VMADBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, B. G., A. J. Matthews, and K. J. Heywood, 2010: A dynamical ocean feedback mechanism for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 136, 740754, https://doi.org/10.1002/qj.604.

    • Search Google Scholar
    • Export Citation
  • Webber, B. G., A. J. Matthews, K. J. Heywood, and D. P. Stevens, 2012a: Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Quart. J. Roy. Meteor. Soc., 138, 514527, https://doi.org/10.1002/qj.936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, B. G., D. P. Stevens, A. J. Matthews, and K. J. Heywood, 2012b: Dynamical ocean forcing of the Madden–Julian oscillation at lead times of up to five months. J. Climate, 25, 28242842, https://doi.org/10.1175/JCLI-D-11-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661483, https://doi.org/10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 7 7 7

Idealized Modeling of the Atmospheric Boundary Layer Response to SST Forcing in the Western Indian Ocean

View More View Less
  • 1 U.S. Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 2 Department of Land, Air and Water Resources, University of California, Davis, Davis, California
Restricted access

Abstract

The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam V. Rydbeck, adam.rydbeck@nrlssc.navy.mil

Abstract

The atmospheric response to sea surface temperature (SST) variations forced by oceanic downwelling equatorial Rossby waves is investigated using an idealized convection-resolving model. Downwelling equatorial Rossby waves sharpen SST gradients in the western Indian Ocean. Changes in SST cause the atmosphere to hydrostatically adjust, subsequently modulating the low-level wind field. In an idealized cloud model, surface wind speeds, surface moisture fluxes, and low-level precipitable water maximize near regions of strongest SST gradients, not necessarily in regions of warmest SST. Simulations utilizing the steepened SST gradient representative of periods with oceanic downwelling equatorial Rossby waves show enhanced patterns of surface convergence and precipitation that are linked to a strengthened zonally overturning circulation. During these conditions, convection is highly organized, clustering near the maximum SST gradient and ascending branch of the SST-induced overturning circulation. When the SST gradient is reduced, as occurs during periods of weak or absent oceanic equatorial Rossby waves, convection is much less organized and total rainfall is decreased. This demonstrates the previously observed upscale organization of convection and rainfall associated with oceanic downwelling equatorial Rossby waves in the western Indian Ocean. These results suggest that the enhancement of surface fluxes that results from a steepening of the SST gradient is the leading mechanism by which oceanic equatorial Rossby waves prime the atmospheric boundary layer for rapid convective development.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adam V. Rydbeck, adam.rydbeck@nrlssc.navy.mil
Save