The Influence of Gravity Waves on the Slope of the Kinetic Energy Spectrum in Simulations of Idealized Midlatitude Cyclones

Maximo Q. Menchaca Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Maximo Q. Menchaca in
Current site
Google Scholar
PubMed
Close
and
Dale R. Durran Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dale R. Durran in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6390-2584
Restricted access

Abstract

The influence of gravity waves generated by surface stress and by topography on the atmospheric kinetic energy (KE) spectrum is examined using idealized simulations of a cyclone growing in baroclinically unstable shear flow. Even in the absence of topography, surface stress greatly enhances the generation of gravity waves in the vicinity of the cold front, and vertical energy fluxes associated with these waves produce a pronounced shallowing of the KE spectrum at mesoscale wavelengths relative to the corresponding free-slip case. The impact of a single isolated ridge is, however, much more pronounced than that of surface stress. When the mountain waves are well developed, they produce a wavenumber to the −5/3 spectrum in the lower stratosphere over a broad range of mesoscale wavelengths. In the midtroposphere, a smaller range of wavelengths also exhibits a −5/3 spectrum. When the mountain is 500 m high, the waves do not break, and their KE is entirely associated with the divergent component of the velocity field, which is almost constant with height. When the mountain is 2 km high, wave breaking creates potential vorticity, and the rotational component of the KE spectrum is also strongly energized by the waves. Analysis of the spectral KE budgets shows that the actual spectrum is the result of continually shifting balances of direct forcing from vertical energy flux divergence, conservative advective transport, and buoyancy flux. Nevertheless, there is one interesting example where the −5/3-sloped lower-stratospheric energy spectrum appears to be associated with a gravity-wave-induced upscale inertial cascade.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dale R. Durran, drdee@uw.edu

Abstract

The influence of gravity waves generated by surface stress and by topography on the atmospheric kinetic energy (KE) spectrum is examined using idealized simulations of a cyclone growing in baroclinically unstable shear flow. Even in the absence of topography, surface stress greatly enhances the generation of gravity waves in the vicinity of the cold front, and vertical energy fluxes associated with these waves produce a pronounced shallowing of the KE spectrum at mesoscale wavelengths relative to the corresponding free-slip case. The impact of a single isolated ridge is, however, much more pronounced than that of surface stress. When the mountain waves are well developed, they produce a wavenumber to the −5/3 spectrum in the lower stratosphere over a broad range of mesoscale wavelengths. In the midtroposphere, a smaller range of wavelengths also exhibits a −5/3 spectrum. When the mountain is 500 m high, the waves do not break, and their KE is entirely associated with the divergent component of the velocity field, which is almost constant with height. When the mountain is 2 km high, wave breaking creates potential vorticity, and the rotational component of the KE spectrum is also strongly energized by the waves. Analysis of the spectral KE budgets shows that the actual spectrum is the result of continually shifting balances of direct forcing from vertical energy flux divergence, conservative advective transport, and buoyancy flux. Nevertheless, there is one interesting example where the −5/3-sloped lower-stratospheric energy spectrum appears to be associated with a gravity-wave-induced upscale inertial cascade.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dale R. Durran, drdee@uw.edu
Save
  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, https://doi.org/10.1175/JAS-D-12-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE. Meteor. Z., 21, 245258, https://doi.org/10.1127/0941-2948/2012/0319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, B., A. Erler, and T. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., 70, 669687, https://doi.org/10.1175/JAS-D-12-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., D. R. Durran, and G. Hakim, 2005: Mountain-wave momentum flux in an evolving synoptic-scale flow. J. Atmos. Sci., 62, 32133231, https://doi.org/10.1175/JAS3543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Wave spectra resembling turbulence. Science, 204, 832835, https://doi.org/10.1126/science.204.4395.832.

  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2010: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. 2nd ed. Springer-Verlag, 516 pp.

    • Crossref
    • Export Citation
  • Durran, D. R., and J. Weyn, 2016: Thunderstorms don’t get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, https://doi.org/10.1175/BAMS-D-15-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Menchaca, 2019: The influence of vertical wind shear on the evolution of mountain-wave momentum flux. J. Atmos. Sci., 76, 749756, https://doi.org/10.1175/JAS-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., J. Weyn, and M. Menchaca, 2017: Computing dimensional spectra from gridded data and compensating for discretization errors. Mon. Wea. Rev., 145, 39013910, https://doi.org/10.1175/MWR-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Gage, K., 1979: Evidence for a k 5 / 3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954, https://doi.org/10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, https://doi.org/10.1146/annurev.fl.11.010179.002011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. Takahasi, and W. Ohfuchi, 2014: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasperson, W., G. Nastrom, and D. Fritts, 1990: Further study of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 47, 979987, https://doi.org/10.1175/1520-0469(1990)047<0979:FSOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., H.-Y. Chun, S.-H. Park, I.-S. Song, and H.-J. Choi, 2016: Characteristics of gravity waves generated in the jet-front system in a baroclinic instability simulation. Atmos. Chem. Phys., 16, 47994815, https://doi.org/10.5194/acp-16-4799-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshyk, J., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratosphere-mesosphere GSM. J. Atmos. Sci., 58, 329348, https://doi.org/10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Lele, S. K., 1992: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 1642, https://doi.org/10.1016/0021-9991(92)90324-R.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, https://doi.org/10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259288, https://doi.org/10.1017/S0022112099004851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malardel, S., and N. Wedi, 2016: How does subgrid-scale parameterisation influence non-linear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos., 121, 53955410, https://doi.org/10.1002/2015JD023970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2017: Mountain waves, downslope winds, and low-level blocking forced by a midlatitude cyclone encountering an isolated ridge. J. Atmos. Sci., 74, 617639, https://doi.org/10.1175/JAS-D-16-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2018: The impact of mountain waves on an idealized baroclinically unstable large-scale flow. J. Atmos. Sci., 75, 32853302, https://doi.org/10.1175/JAS-D-17-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and D. Fritts, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49, 101110, https://doi.org/10.1175/1520-0469(1992)049<0101:SOMVOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G., D. Fritts, and K. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 44, 30873096, https://doi.org/10.1175/1520-0469(1987)044<3087:AIOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and Y. Zhang, 2014: Mesoscale energy spectra of the Mei-Yu front system. Part I: Kinetic energy spectra. J. Atmos. Sci., 71, 3755, https://doi.org/10.1175/JAS-D-13-085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, and J. Guan, 2015a: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part I: The lower-stratospheric energy spectra. J. Atmos. Sci., 72, 20902108, https://doi.org/10.1175/JAS-D-14-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, and J. Guan, 2015b: Applications of a moist nonhydrostatic formulation of the spectral energy budget to baroclinic waves. Part II: The upper-tropospheric energy spectra. J. Atmos. Sci., 72, 39233939, https://doi.org/10.1175/JAS-D-14-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022519, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selz, T., L. Bierdel, and G. C. Craig, 2019: Estimation of the variability of mesoscale energy spectra with three years of COSMO-DE analyses. J. Atmos. Sci., 76, 627637, https://doi.org/10.1175/JAS-D-18-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., S.-H. Park, J. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simuations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., B. Woods, J. Jensen, W. Cooper, J. Doyle, Q. Jiang, and V. Grubis̆ić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65, 25432562, https://doi.org/10.1175/2007JAS2598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2016: Stratospheric gravity wave fluxes and scales during DEEPWAVE. J. Atmos. Sci., 73, 28512869, https://doi.org/10.1175/JAS-D-15-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, https://doi.org/10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, M. P. H., and M. A. Porter, 2012: Critical truths about power laws. Science, 335, 665666, https://doi.org/10.1126/science.1216142.

  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 946 pp.

    • Crossref
    • Export Citation
  • VanZandt, T., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, https://doi.org/10.1029/GL009i005p00575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, https://doi.org/10.1175/2008JAS2829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyn, J., and D. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 21912210, https://doi.org/10.1175/JAS-D-17-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyn, J., and D. Durran, 2019: The scale dependence of initial-condition sensitivities in simulations of convective systems over the southeastern United States. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3367, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1175 681 54
PDF Downloads 498 75 16