• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, H. S., T. Woollings, and C. Mbengue, 2017: Eddy-driven jet sensitivity to diabatic heating in an idealized GCM. J. Climate, 30, 64136431, https://doi.org/10.1175/JCLI-D-16-0864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 22382257, https://doi.org/10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. Chen, 2001: The origin of monsoons. J. Atmos. Sci., 58, 34973507, https://doi.org/10.1175/1520-0469(2001)058<3497:TOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., M. P. Hoerling, and R. M. Dole, 2001: The origin of the subtropical anticyclones. J. Atmos. Sci., 58, 18271835, https://doi.org/10.1175/1520-0469(2001)058<1827:TOOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2003: Maintenance of summer monsoon circulations: A planetary-scale perspective. J. Climate, 16, 20222037, https://doi.org/10.1175/1520-0442(2003)016<2022:MOSMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci., 42, 19441959, https://doi.org/10.1175/1520-0469(1985)042<1944:LROAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dethof, A., A. O’Neill, J. M. Slingo, and H. G. J. Smit, 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 10791106, https://doi.org/10.1002/qj.1999.49712555602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1995: Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions. J. Geophys. Res., 100, 16 67516 688, https://doi.org/10.1029/95JD01263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 1 January 2017, https://doi.org/10.5065/D6CR5RD9.

    • Crossref
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., K. C. Mo, and Y. Yao, 1998: Interannual variability of the U.S. summer precipitation regime with emphasis on the southwestern monsoon. J. Climate, 11, 25822606, https://doi.org/10.1175/1520-0442(1998)011<2582:IVOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680, https://doi.org/10.1175/1520-0442(1999)012<0653:IVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 13291340, https://doi.org/10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2017: TRMM and other data precipitation data set documentation. NASA Rep., 45 pp., ftp://meso.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and N.-C. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, https://doi.org/10.1175/2007JCLI2024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. H. Cook, 1997: On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci., 54, 656678, https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., 1983: The effects of horizontal diffusion on baroclinic development in a spectral model. Quart. J. Roy. Meteor. Soc., 109, 771783, https://doi.org/10.1002/qj.49710946206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). National Center for Atmospheric Research Tech. Rep. NCAR/TN-486+STR, 274 pp.

  • Phlips, P. J., and A. E. Gill, 1987: An analytic model of the heat-induced tropical circulation in the presence of a mean wind. Quart. J. Roy. Meteor. Soc., 113, 213236, https://doi.org/10.1002/qj.49711347513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340, https://doi.org/10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586, https://doi.org/10.1175/JAS3699.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2013: Upscale effects of deep convection during the North American monsoon. J. Atmos. Sci., 70, 26812695, https://doi.org/10.1175/JAS-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., L. M. Polvani, and S. M. Davis, 2011: The response of the tropospheric circulation to water vapor–like forcings in the stratosphere. J. Climate, 24, 57135720, https://doi.org/10.1175/JCLI-D-11-00069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, https://doi.org/10.1175/JCLI-D-12-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., R. J. Haarsma, A. S. Gupta, C. C. Ummenhofer, K. J. Hill, and M. H. England, 2010: Australian monsoon variability driven by a Gill–Matsuno-type response to central west Pacific warming. J. Climate, 23, 47174736, https://doi.org/10.1175/2010JCLI3474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tropical Rainfall Measuring Mission, 2011: TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree, version 7. Goddard Earth Sciences Data and Information Services Center, accessed 1 January 2017, https://doi.org/10.5067/TRMM/TMPA/3H/7.

    • Crossref
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 946 pp.

    • Crossref
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2018: The simulation of stratospheric water vapor over the Asian summer monsoon in CESM1(WACCM) models. J. Geophys. Res. Atmos., 123, 11 37711 391, https://doi.org/10.1029/2018JD028971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100, 518541, https://doi.org/10.1175/1520-0493(1972)100<0518:ROTTAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 0 0 0

Forcing of the Upper-Tropospheric Monsoon Anticyclones

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
Restricted access

Abstract

During the boreal warm season (May–September), the circulation in the upper troposphere and lower stratosphere is dominated by two large anticyclones: the Asian monsoon anticyclone (AMA) and North American monsoon anticyclone (NAMA). The existence of the AMA has long been linked to Asian monsoon precipitation using the Matsuno–Gill framework, but the origin of the NAMA has not been clearly understood. Here the forcing mechanisms of the NAMA are investigated using a simplified dry general circulation model. The simulated anticyclones are in good agreement with observations when the model is forced by a zonally symmetric meridional temperature gradient plus a realistic geographical distribution of heating based on observed tropical and subtropical precipitation in the Northern Hemisphere. Model experiments show that the AMA and NAMA are largely independent of one another, and the NAMA is not a downstream response to the Asian monsoon. The primary forcing of the NAMA is precipitation in the longitude sector between 60° and 120°W, with the largest contribution coming from the subtropical latitudes within that sector. Experiments with idealized regional heating distributions reveal that the extratropical response to tropical and subtropical precipitation depends approximately linearly on the magnitude of the forcing but nonlinearly on its latitude. The AMA is stronger than the NAMA, primarily because precipitation in the subtropics over Asia is much heavier than at similar latitudes in the Western Hemisphere.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leong Wai Siu, chris.siu@tamu.edu

Abstract

During the boreal warm season (May–September), the circulation in the upper troposphere and lower stratosphere is dominated by two large anticyclones: the Asian monsoon anticyclone (AMA) and North American monsoon anticyclone (NAMA). The existence of the AMA has long been linked to Asian monsoon precipitation using the Matsuno–Gill framework, but the origin of the NAMA has not been clearly understood. Here the forcing mechanisms of the NAMA are investigated using a simplified dry general circulation model. The simulated anticyclones are in good agreement with observations when the model is forced by a zonally symmetric meridional temperature gradient plus a realistic geographical distribution of heating based on observed tropical and subtropical precipitation in the Northern Hemisphere. Model experiments show that the AMA and NAMA are largely independent of one another, and the NAMA is not a downstream response to the Asian monsoon. The primary forcing of the NAMA is precipitation in the longitude sector between 60° and 120°W, with the largest contribution coming from the subtropical latitudes within that sector. Experiments with idealized regional heating distributions reveal that the extratropical response to tropical and subtropical precipitation depends approximately linearly on the magnitude of the forcing but nonlinearly on its latitude. The AMA is stronger than the NAMA, primarily because precipitation in the subtropics over Asia is much heavier than at similar latitudes in the Western Hemisphere.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leong Wai Siu, chris.siu@tamu.edu
Save