• Back, L. E., and C. S. Bretherton, 2009a: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009b: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497, https://doi.org/10.1175/2009JCLI2393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, https://doi.org/10.1002/qj.49710544615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, https://doi.org/10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2010: Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci., 67, 16431654, https://doi.org/10.1175/2009JAS3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, https://doi.org/10.1029/2007GL030971.

    • Crossref
    • Export Citation
  • Caballero, R., 2008: Hadley cell bias in climate models linked to extratropical eddy stress. Geophys. Res. Lett, 35, L18709, https://doi.org/10.1029/2008GL035084.

    • Crossref
    • Export Citation
  • Caballero, R., R. T. Pierrehumbert, and J. L. Mitchell, 2008: Axisymmetric, nearly inviscid circulations in non-condensing radiative-convective atmospheres. Quart. J. Roy. Meteor. Soc., 134, 12691285, https://doi.org/10.1002/qj.271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, https://doi.org/10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., D. M. W. Frierson, and D. S. Battisti, 2014: The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. Climate Dyn., 43, 10411055, https://doi.org/10.1007/s00382-013-1843-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983a: The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci., 40, 23682376, https://doi.org/10.1175/1520-0469(1983)040<2368:TLPDOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983b: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 20162033, https://doi.org/10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 18051816, https://doi.org/10.1175/1520-0493(1988)116<1805:OEOSCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 15291534, https://doi.org/10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faulk, S., J. Mitchell, and S. Bordoni, 2017: Effects of rotation rate and seasonal forcing on the ITCZ extent in planetary atmospheres. J. Atmos. Sci., 74, 665678, https://doi.org/10.1175/JAS-D-16-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, 1951, https://doi.org/10.1029/2002GL015835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841853, https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., S. Bordoni, and J. L. Mitchell, 2019: Axisymmetric constraints on cross-equatorial Hadley cell extent. J. Atmos. Sci., 76, 15471564, https://doi.org/10.1175/JAS-D-18-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2013: Interannual variability of monsoon precipitation and local subcloud equivalent potential temperature. J. Climate, 26, 95079527, https://doi.org/10.1175/JCLI-D-12-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korty, R., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991, https://doi.org/10.1175/2007JCLI1788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., W. R. Boos, and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, https://doi.org/10.1175/2010JCLI3505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., and Y. Kaspi, 2016: Slantwise convection on fluid planets. Geophys. Res. Lett., 43, 10 61110 620, https://doi.org/10.1002/2016GL071188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2007: Dynamical constraints on monsoon circulations. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 252–266.

  • Plumb, R. A., and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 17901799, https://doi.org/10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007a: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, https://doi.org/10.1175/JAS3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007b: Monsoon dynamics with interactive forcing. Part II: Impact of eddies and asymmetric geometries. J. Atmos. Sci., 64, 14311442, https://doi.org/10.1175/JAS3917.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1977: Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci., 34, 280296, https://doi.org/10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shekhar, R., and W. R. Boos, 2016: Improving energy-based estimates of monsoon location in the presence of proximal deserts. J. Climate, 29, 47414761, https://doi.org/10.1175/JCLI-D-15-0747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and Z. Kuang, 2016: Exploring the role of eddy momentum fluxes in determining the characteristics of the equinoctial Hadley circulation: Fixed-SST simulations. J. Atmos. Sci., 73, 24272444, https://doi.org/10.1175/JAS-D-15-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H.-H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 17081725, https://doi.org/10.1029/2018MS001313.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 4 4 4

Limits on the Extent of the Solsticial Hadley Cell: The Role of Planetary Rotation

View More View Less
  • 1 School of Earth, Atmosphere and Environment, and Centre of Excellence for Climate Extremes, Monash University, Clayton, Victoria, Australia
Restricted access

Abstract

The role of planetary rotation in limiting the extent of the cross-equatorial solsticial Hadley cell (SHC) is investigated using idealized simulations with an aquaplanet general circulation model run under perpetual-solstice conditions. Consistent with previous studies that include a seasonal cycle, the SHC extent increases with decreasing rotation rate, and it occupies the entire globe for sufficiently low planetary rotation rates. A simple theory for the summer-hemisphere extent of the SHC is constructed in which it is assumed that the SHC occupies regions for which a hypothetical radiative–convective equilibrium state is physically unattainable. The theory predicts that the SHC extends farther into the summer hemisphere as the rotation rate is decreased, qualitatively reproducing the behavior of the simulations, but it generally underestimates the simulated SHC extent. A diagnostic theory for the summer-hemisphere SHC extent is then developed based on the assumptions of slantwise convective neutrality and conservation of angular momentum within the Hadley cell. The theory relates the structure of the SHC in the summer hemisphere to the distribution of boundary layer entropy in the dynamically equilibrated simulations. The resultant diagnostic for the SHC extent generalizes the convective quasi-equilibrium-based constraint of Privé and Plumb, in which the position of rain belts is related to maxima in the low-level entropy distribution.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martin S. Singh, martin.singh@monash.edu

Abstract

The role of planetary rotation in limiting the extent of the cross-equatorial solsticial Hadley cell (SHC) is investigated using idealized simulations with an aquaplanet general circulation model run under perpetual-solstice conditions. Consistent with previous studies that include a seasonal cycle, the SHC extent increases with decreasing rotation rate, and it occupies the entire globe for sufficiently low planetary rotation rates. A simple theory for the summer-hemisphere extent of the SHC is constructed in which it is assumed that the SHC occupies regions for which a hypothetical radiative–convective equilibrium state is physically unattainable. The theory predicts that the SHC extends farther into the summer hemisphere as the rotation rate is decreased, qualitatively reproducing the behavior of the simulations, but it generally underestimates the simulated SHC extent. A diagnostic theory for the summer-hemisphere SHC extent is then developed based on the assumptions of slantwise convective neutrality and conservation of angular momentum within the Hadley cell. The theory relates the structure of the SHC in the summer hemisphere to the distribution of boundary layer entropy in the dynamically equilibrated simulations. The resultant diagnostic for the SHC extent generalizes the convective quasi-equilibrium-based constraint of Privé and Plumb, in which the position of rain belts is related to maxima in the low-level entropy distribution.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Martin S. Singh, martin.singh@monash.edu
Save