Potential Vorticity Diagnostics to Quantify Effects of Latent Heating in Extratropical Cyclones. Part II: Application to Idealized Climate Change Simulations

Dominik Büeler Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, and Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Dominik Büeler in
Current site
Google Scholar
PubMed
Close
and
Stephan Pfahl Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, and Institute of Meteorology, Freie Universität Berlin, Berlin, Germany

Search for other papers by Stephan Pfahl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is still debated how enhanced cloud-condensational latent heating (LH) in a warmer and moister climate may affect the dynamics of extratropical cyclones. In this study, a diagnostic method that explicitly quantifies the contribution of LH to the lower-tropospheric cyclonic potential vorticity (PV) anomaly is used to investigate the effects of stronger LH on the dynamics, intensity, and impacts of cyclones in two conceptually different sets of idealized climate change simulations. A first set of regional surrogate climate change simulations of individual moderate to intense Northern Hemisphere cyclones in a spatially homogeneously 4-K-warmer climate reveals that enhanced LH can largely but not exclusively explain the substantially varying increase in intensity and impacts of most of these cyclones. A second set of idealized aquaplanet GCM simulations demonstrates that the role of enhanced LH becomes multifaceted for large ensembles of cyclones if climate warming is additionally accompanied by changes in the horizontal and vertical temperature structure: cyclone intensity increases with warming due to the continuous increase in LH, reaches a maximum in climates warmer than present day, and decreases beyond a certain warming once the increase of LH is overcompensated by the counteracting reduction in mean available potential energy. Because of their substantially stronger increase in LH, the most intense cyclones reach their maximum intensity in warmer climates than moderately intense cyclones with weaker LH. This suggests that future projections of the extreme tail of the storm tracks might be particularly sensitive to a correct representation of LH.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dominik Büeler, dominik.bueeler@kit.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0041.1.

Abstract

It is still debated how enhanced cloud-condensational latent heating (LH) in a warmer and moister climate may affect the dynamics of extratropical cyclones. In this study, a diagnostic method that explicitly quantifies the contribution of LH to the lower-tropospheric cyclonic potential vorticity (PV) anomaly is used to investigate the effects of stronger LH on the dynamics, intensity, and impacts of cyclones in two conceptually different sets of idealized climate change simulations. A first set of regional surrogate climate change simulations of individual moderate to intense Northern Hemisphere cyclones in a spatially homogeneously 4-K-warmer climate reveals that enhanced LH can largely but not exclusively explain the substantially varying increase in intensity and impacts of most of these cyclones. A second set of idealized aquaplanet GCM simulations demonstrates that the role of enhanced LH becomes multifaceted for large ensembles of cyclones if climate warming is additionally accompanied by changes in the horizontal and vertical temperature structure: cyclone intensity increases with warming due to the continuous increase in LH, reaches a maximum in climates warmer than present day, and decreases beyond a certain warming once the increase of LH is overcompensated by the counteracting reduction in mean available potential energy. Because of their substantially stronger increase in LH, the most intense cyclones reach their maximum intensity in warmer climates than moderately intense cyclones with weaker LH. This suggests that future projections of the extreme tail of the storm tracks might be particularly sensitive to a correct representation of LH.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dominik Büeler, dominik.bueeler@kit.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0041.1.

Save
  • Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, https://doi.org/10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azad, R., and A. Sorteberg, 2014: The vorticity budgets of North Atlantic winter extratropical cyclone life cycles in MERRA reanalysis. Part I: Development phase. J. Atmos. Sci., 71, 31093128, https://doi.org/10.1175/JAS-D-13-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, https://doi.org/10.1175/2008JCLI2678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., 1988: Potential vorticity in extratropical cyclones. Ph.D. thesis, University of Reading, 168 pp.

  • Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 39974020, https://doi.org/10.1175/JAS-D-15-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2013: A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Wea. Rev., 141, 11391154, https://doi.org/10.1175/MWR-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, https://doi.org/10.1007/s00382-012-1472-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büeler, D., 2017: Potential vorticity diagnostics to quantify effects of latent heating in extratropical cyclones: Methodology and application to idealized climate change simulations. Ph.D. thesis, ETH Zurich, 166 pp., https://doi.org/10.3929/ethz-b-000250887.

    • Crossref
    • Export Citation
  • Büeler, D., and S. Pfahl, 2017: Potential vorticity diagnostics to quantify effects of latent heating in extratropical cyclones. Part I: Methodology. J. Atmos. Sci., 74, 35673590, https://doi.org/10.1175/JAS-D-17-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Čampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725740, https://doi.org/10.1175/JAS-D-11-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352, https://doi.org/10.1175/2011JCLI4181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Champion, A. J., K. I. Hodges, L. O. Bengtsson, N. S. Keenlyside, and M. Esch, 2011: Impact of increasing resolution and a warmer climate on extreme weather from Northern Hemisphere extratropical cyclones. Tellus, 63A, 893906, https://doi.org/10.1111/j.1600-0870.2011.00538.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2014: Impacts of background field removal on CMIP5 projected changes in Pacific winter cyclone activity. J. Geophys. Res. Atmos., 119, 46264639, https://doi.org/10.1002/2013JD020746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2017: Projected significant increase in the number of extreme extratropical cyclones in the Southern Hemisphere. J. Climate, 30, 49154935, https://doi.org/10.1175/JCLI-D-16-0553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2018: CMIP5 projected change in Northern Hemisphere winter cyclones with associated extreme winds. J. Climate, 31, 65276542, https://doi.org/10.1175/JCLI-D-17-0899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246260, https://doi.org/10.1175/JCLI-D-11-00707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. F. Booth, and E. K. M. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr. Climate Change Rep., 1, 125143, https://doi.org/10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 23222327, https://doi.org/10.1002/grl.50105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 24092428, https://doi.org/10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett., 39, L07803, https://doi.org/10.1029/2012GL051025.

    • Crossref
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, https://doi.org/10.1029/98GL51099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., T. M. Merlis, J. R. Gyakum, and R. McTaggart-Cowan, 2018: Sensitivity of idealized moist baroclinic waves to environmental temperature and moisture content. J. Atmos. Sci., 75, 337360, https://doi.org/10.1175/JAS-D-17-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedláček, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Chang., 3, 369373, https://doi.org/10.1038/nclimate1716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kröner, N., S. Kotlarski, E. Fischer, D. Lüthi, E. Zubler, and C. Schär, 2017: Separating climate change signals into thermodynamic, lapse-rate and circulation effects: Theory and application to the European summer climate. Climate Dyn., 48, 34253440, https://doi.org/10.1007/s00382-016-3276-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2015: Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc., 96, 547560, https://doi.org/10.1175/BAMS-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. East Coast cyclone dynamics with climate change. J. Climate, 28, 468484, https://doi.org/10.1175/JCLI-D-14-00418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., S. L. Gray, and J. Methven, 2016: Diabatic processes and the evolution of two contrasting summer extratropical cyclones. Mon. Wea. Rev., 144, 32513276, https://doi.org/10.1175/MWR-D-15-0395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., J. Willison, G. M. Lackmann, and W. A. Robinson, 2017: Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo-global warming simulations. J. Climate, 30, 69056925, https://doi.org/10.1175/JCLI-D-16-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2004: Reexamining the dynamics of short-scale, diabatic Rossby waves and their role in midlatitude moist cyclogenesis. J. Atmos. Sci., 61, 754768, https://doi.org/10.1175/1520-0469(2004)061<0754:RTDOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725, https://doi.org/10.1175/JAS3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 7590, https://doi.org/10.1175/2010JAS3537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008a: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 57975806, https://doi.org/10.1175/2008JCLI2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008b: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., T. M. Merlis, and M. S. Singh, 2018: Increase in the skewness of extratropical vertical velocities with climate warming: Fully nonlinear simulations versus moist baroclinic instability. Quart. J. Roy. Meteor. Soc., 144, 208217, https://doi.org/10.1002/qj.3195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: a model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, https://doi.org/10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and M. S. Singh, 2015: Extratropical cyclones in idealized simulations of changed climates. J. Climate, 28, 93739392, https://doi.org/10.1175/JCLI-D-14-00816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rantanen, M., J. Raïsänen, J. Lento, O. Stepanyuk, O. Räty, V. A. Sinclair, and H. Järvinen, 2017: OZO v.1.0: Software for solving a generalised omega equation and the Zwack-Okossi height tendency equation using WRF model output. Geosci. Model Dev., 10, 827841, https://doi.org/10.5194/gmd-10-827-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rantanen, M., J. Räisänen, V. A. Sinclair, and H. Järvinen, 2019: Sensitivity of idealised baroclinic waves to mean atmospheric temperature and meridional temperature gradient changes. Climate Dyn., 52, 27032719, https://doi.org/10.1007/s00382-018-4283-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, https://doi.org/10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandvik, M. I., A. Sorteberg, and R. Rasmussen, 2018: Sensitivity of historical orographically enhanced extreme precipitation events to idealized temperature perturbations. Climate Dyn., 50, 143157, https://doi.org/10.1007/s00382-017-3593-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656665, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and C. L. Meyer, 2006: The general circulation and robust relative humidity. J. Climate, 19, 62786290, https://doi.org/10.1175/JCLI3979.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., D. Rind, and P. Lonergan, 1998: Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 392, 589592, https://doi.org/10.1038/33385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., and R. S. Lindzen, 1991: Quasi-geostrophic wave-CISK in an unbounded baroclinic shear. J. Atmos. Sci., 48, 7686, https://doi.org/10.1175/1520-0469(1991)048<0076:QGWCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, https://doi.org/10.1007/s00703-001-0592-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SwissRe, 2016: Natural catastrophes and man-made disasters in 2015: Asia suffers substantial losses. Sigma Research 1/2016, https://www.swissre.com/institute/research/sigma-research/sigma-2016-01.html.

  • Tierney, G., D. J. Posselt, and J. F. Booth, 2018: An examination of extratropical cyclone response to changes in baroclinicity and temperature in an idealized environment. Climate Dyn., 51, 38293846, https://doi.org/10.1007/s00382-018-4115-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trzeciak, T. M., P. Knippertz, J. S. R. Pirret, and K. D. Williams, 2016: Can we trust climate models to realistically represent severe European windstorms? Climate Dyn., 46, 34313451, https://doi.org/10.1007/s00382-015-2777-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, https://doi.org/10.1007/s00704-008-0083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1995: Lagrangian perspective of extratropical cyclogenesis. Ph.D. thesis, ETH Zürich, 157 pp., https://doi.org/10.3929/ethz-a-001442585.

    • Crossref
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, https://doi.org/10.1175/JAS-D-12-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2015: North Atlantic storm-track sensitivity to warming increases with model resolution. J. Climate, 28, 45134524, https://doi.org/10.1175/JCLI-D-14-00715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 22642282, https://doi.org/10.1175/1520-0469(1996)053<2264:ANSOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yettella, V., and J. E. Kay, 2017: How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Climate Dyn., 49, 17651781, https://doi.org/10.1007/s00382-016-3410-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013a: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, https://doi.org/10.1175/JCLI-D-12-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013b: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, https://doi.org/10.1175/JCLI-D-12-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1926 825 66
PDF Downloads 760 142 17