• Andrich, M. A., and J. Imberger, 2013: The effect of land clearing on rainfall and fresh water resources in Western Australia: A multi-functional sustainability analysis. Int. J. Sustainable Dev. World Ecol., 20, 549563, https://doi.org/10.1080/13504509.2013.850752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., N. Marwan, H. M. J. Barbosa, and J. Kurths, 2017: A deforestation-induced tipping point for the South American monsoon system. Sci. Rep., 7, 41489, https://doi.org/10.1038/srep41489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and T. Storelvmo, 2016: Reply to Levermann et al.: Linear scaling for monsoons based on well-verified balance between adiabatic cooling and latent heat release. Proc. Natl. Acad. Sci. USA, 113, E2350E2351, https://doi.org/10.1073/pnas.1603626113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikoore, H., and M. R. Jury, 2010: Intraseasonal variability of satellite-derived rainfall and vegetation over Southern Africa. Earth Interact., 14, https://doi.org/10.1175/2010EI267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorshkov, V. G., A. M. Makarieva, and A. V. Nefiodov, 2012: Condensation of water vapor in the gravitational field. J. Exp. Theor. Phys., 115, 723728, https://doi.org/10.1134/S106377611209004X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzschuh, U., J. Borkowski, J. Schewe, S. Mischke, and F. Tian, 2014: Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 402, 4454, https://doi.org/10.1016/j.palaeo.2014.02.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaramillo, A., O. J. Mesa, and D. J. Raymond, 2018: Is condensation-induced atmospheric dynamics a new theory of the origin of the winds? J. Atmos. Sci., 75, 33053312, https://doi.org/10.1175/JAS-D-17-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermann, A., J. Schewe, V. Petoukhov, and H. Held, 2009: Basic mechanism for abrupt monsoon transitions. Proc. Natl. Acad. Sci. USA, 106, 20 57220 577, https://doi.org/10.1073/pnas.0901414106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermann, A., V. Petoukhov, J. Schewe, and H. J. Schellnhuber, 2016: Abrupt monsoon transitions as seen in paleorecords can be explained by moisture-advection feedback. Proc. Natl. Acad. Sci. USA, 113, E2348E2349, https://doi.org/10.1073/pnas.1603130113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2007: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci., 11, 10131033, https://doi.org/10.5194/hess-11-1013-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2009: Condensation-induced kinematics and dynamics of cyclones, hurricanes and tornadoes. Phys. Lett., 373A, 42014205, https://doi.org/10.1016/j.physleta.2009.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2010: The biotic pump: Condensation, atmospheric dynamics and climate. Int. J. Water, 5, 365385, https://doi.org/10.1504/IJW.2010.038729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., and V. G. Gorshkov, 2011: Radial profiles of velocity and pressure for condensation-induced hurricanes. Phys. Lett., 375A, 10531058, https://doi.org/10.1016/j.physleta.2011.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, and A. V. Nefiodov, 2011: Condensational theory of stationary tornadoes. Phys. Lett., 375A, 22592261, https://doi.org/10.1016/j.physleta.2011.04.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, and B.-L. Li, 2013a: Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor. Appl. Climatol., 111, 7996, https://doi.org/10.1007/s00704-012-0643-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, D. Sheil, A. D. Nobre, and B.-L. Li, 2013b: Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos. Chem. Phys., 13, 10391056, https://doi.org/10.5194/acp-13-1039-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, and A. V. Nefiodov, 2014a: Condensational power of air circulation in the presence of a horizontal temperature gradient. Phys. Lett., 378A, 294298, https://doi.org/10.1016/j.physleta.2013.11.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, D. Sheil, A. D. Nobre, P. Bunyard, and B.-L. Li, 2014b: Why does air passage over forest yield more rain? Examining the coupling between rainfall, pressure, and atmospheric moisture content. J. Hydrometeor., 15, 411426, https://doi.org/10.1175/JHM-D-12-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makarieva, A. M., V. G. Gorshkov, A. V. Nefiodov, D. Sheil, A. D. Nobre, P. Bunyard, P. Nobre, and B.-L. Li, 2017: The equations of motion for moist atmospheric air. J. Geophys. Res. Atmos., 122, 73007307, https://doi.org/10.1002/2017JD026773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., L. Jaramillo, and L. F. Vallejo, 2014: Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res., 50, 98118, https://doi.org/10.1002/2013WR014087.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Comments on “Is Condensation-Induced Atmospheric Dynamics a New Theory of the Origin of the Winds?”

View More View Less
  • a Theoretical Physics Division, Petersburg Nuclear Physics Institute, Saint Petersburg, Russia
  • | b U.S. Department of Agriculture–China Ministry of Science and Technology Joint Research Center for AgroEcology and Sustainability, University of California, Riverside, Riverside, California
  • | c Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • | d Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
  • | e Center for Weather Forecast and Climate Studies, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
Restricted access

Abstract

Here we respond to Jaramillo et al.’s recent critique of condensation-induced atmospheric dynamics (CIAD). We show that CIAD is consistent with Newton’s laws while Jaramillo et al.’s analysis is invalid. To address implied objections, we explain our different formulations of “evaporative force.” The essential concept of CIAD is condensation’s role in powering atmospheric circulation. We briefly highlight why this concept is necessary and useful.

Deceased.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. M. Makarieva, ammakarieva@gmail.com

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0293.1.

Abstract

Here we respond to Jaramillo et al.’s recent critique of condensation-induced atmospheric dynamics (CIAD). We show that CIAD is consistent with Newton’s laws while Jaramillo et al.’s analysis is invalid. To address implied objections, we explain our different formulations of “evaporative force.” The essential concept of CIAD is condensation’s role in powering atmospheric circulation. We briefly highlight why this concept is necessary and useful.

Deceased.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. M. Makarieva, ammakarieva@gmail.com

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-17-0293.1.

Save