• Barker, H. W., and J. A. Davies, 1992: Solar radiative fluxes for broken cloud fields above reflecting surfaces. J. Atmos. Sci., 49, 749761, https://doi.org/10.1175/1520-0469(1992)049<0749:SRFFBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., B. A. Wielicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53, 23042316, https://doi.org/10.1175/1520-0469(1996)053<2304:APFCGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., R. K. Goldstein, and D. E. Stevens, 2003: Monte Carlo simulation of solar reflectances for cloudy atmospheres. J. Atmos. Sci., 60, 18811894, https://doi.org/10.1175/1520-0469(2003)060<1881:MCSOSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J. Li, B. Yi, and P. Yang, 2015: Estimation of errors in two-stream approximations of the solar radiative transfer equation for cloudy-sky conditions. J. Atmos. Sci., 72, 40534074, https://doi.org/10.1175/JAS-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J. Li, and K. von Salzen, 2016: A parametrization of 3-D subgrid-scale clouds for conventional GCMs: Assessment using A-Train satellite data and solar radiative transfer characteristics. J. Adv. Model. Earth Syst., 8, 566597, https://doi.org/10.1002/2015MS000601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benner, T. C., and K. F. Evans, 2001: Three-dimensional solar radiative transfer in small tropical cumulus fields derived from high-resolution imagery. J. Geophys. Res., 106, 14 97514 984, https://doi.org/10.1029/2001JD900158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093, https://doi.org/10.1256/003590002320373210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261272, https://doi.org/10.1175/1520-0493(1989)117<0261:FSOCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Giuseppe, F., and A. M. Tompkins, 2015: Generalizing cloud overlap treatment to include the effect of wind shear. J. Atmos. Sci., 72, 28652876, https://doi.org/10.1175/JAS-D-14-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code: 1. Choosing a configuration for a large scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, https://doi.org/10.1175/MWR-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gotoh, K., and Y. Fujii, 1998: A fractal dimensional analysis on the cloud shape parameters of cumulus over land. J. Appl. Meteor., 37, 12831292, https://doi.org/10.1175/1520-0450(1998)037<1283:AFDAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gounou, A., and R. J. Hogan, 2007: A sensitivity study of the effect of horizontal photon transport on the radiative forcing of contrails. J. Atmos. Sci., 64, 17061716, https://doi.org/10.1175/JAS3915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hapke, B., D. DiMucci, R. Nelson, and W. Smythe, 1996: The cause of the hot spot in vegetation canopies in soils: Shadow-hiding versus coherent backscatter. Remote Sens. Environ., 58, 6368, https://doi.org/10.1016/0034-4257(95)00257-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, P. G., C. J. Morcrette, and I. A. Boutle, 2015: A regime-dependent parametrization of subgrid-scale cloud water content variability. Quart. J. Roy. Meteor. Soc., 141, 19751986, https://doi.org/10.1002/qj.2506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. Battaglia, 2008: Fast lidar and radar multiple-scattering models. Part II: Wide-angle scattering using the time-dependent two-stream approximation. J. Atmos. Sci., 65, 36363651, https://doi.org/10.1175/2008JAS2643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and J. K. P. Shonk, 2013: Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer radiation schemes. J. Atmos. Sci., 70, 708724, https://doi.org/10.1175/JAS-D-12-041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. Bozzo, 2018: A flexible and efficient radiation scheme for the ECMWF model. J. Adv. Model. Earth Syst., 10, 19902008, https://doi.org/10.1029/2018MS001364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., S. A. K. Schäfer, C. Klinger, J.-C. Chiu, and B. Mayer, 2016: Representing 3D cloud-radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res. Atmos., 121, 85838599, https://doi.org/10.1002/2016JD024875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., T. Quaife, and R. Braghiere, 2018: Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1. Geosci. Model Dev., 11, 339350, https://doi.org/10.5194/gmd-11-339-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroyer, S., S. Bélair, S. Husain, and J. Mailhot, 2014: Subkilometer numerical weather prediction in an urban coastal area: A case study over the Vancouver metropolitan area. J. Appl. Meteor. Climatol., 53, 14331453, https://doi.org/10.1175/JAMC-D-13-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. Hannay, and K. F. Evans, 2005: The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using ground-based profiling instruments. J. Atmos. Sci., 62, 22842293, https://doi.org/10.1175/JAS3464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, S. A. K., R. J. Hogan, C. Klinger, and B. Mayer, 2016: Representing 3D effects in two-stream radiation schemes: 1. Longwave considerations and effective cloud edge length. J. Geophys. Res. Atmos., 121, 85678582, https://doi.org/10.1002/2016JD024876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., and R. J. Hogan, 2008: Tripleclouds: An efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height. J. Climate, 21, 23522370, https://doi.org/10.1175/2007JCLI1940.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., R. J. Hogan, J. M. Edwards, and G. G. Mace, 2010: Effect of improving representation of horizontal and vertical cloud structure on the Earth’s global radiation budget. Part I: Review and parametrization. Quart. J. Roy. Meteor. Soc., 136, 11911204, https://doi.org/10.1002/qj.647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Várnai, T., and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56, 42064224, https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, R. M., and B. A. Wielicki, 1984: Stratocumulus cloud field reflected fluxes: The effect of cloud shape. J. Atmos. Sci., 41, 30853103, https://doi.org/10.1175/1520-0469(1984)041<3085:SCFRFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wissmeier, U., R. Buras, and B. Mayer, 2013: paNTICA: A fast 3D radiative transfer scheme to calculate surface solar irradiance for NWP and LES models. J. Appl. Meteor. Climatol., 52, 16981715, https://doi.org/10.1175/JAMC-D-12-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, https://doi.org/10.1175/2011JCLI4056.1.

  • Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-K. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 27942807, https://doi.org/10.1175/JAS-D-13-020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 17 17 17

Entrapment: An Important Mechanism to Explain the Shortwave 3D Radiative Effect of Clouds

View More View Less
  • 1 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 2 Environment and Climate Change Canada, Toronto, Canada
  • | 3 CNRM, Météo-France/CNRS, and LAPLACE, Université de Toulouse, Toulouse, France
  • | 4 Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany
Restricted access

Abstract

Several mechanisms have previously been proposed to explain differences between the shortwave reflectance of realistic cloud scenes computed using the 1D independent column approximation (ICA) and 3D solutions of the radiative transfer equation. When the sun is low in the sky, interception of sunlight by cloud sides tends to increase reflectance relative to ICA estimates that neglect this effect. When the sun is high, 3D radiative transfer tends to make clouds less reflective, which we argue is explained by the mechanism of “entrapment” whereby horizontal transport of radiation beneath a cloud layer increases the chances, relative to the ICA, of light being absorbed by cloud or the surface. It is especially important for multilayered cloud scenes. We describe modifications to the previously described Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS) to represent different entrapment assumptions, and test their impact on 65 contrasting scenes from a cloud-resolving model. When entrapment is represented explicitly via a calculation of the mean horizontal distance traveled by reflected light, SPARTACUS predicts a mean “3D radiative effect” (the difference in top-of-atmosphere irradiances between 3D and ICA calculations) of 8.1 W m−2 for overhead sun. This is within 2% of broadband Monte Carlo calculations on the same scenes. The importance of entrapment is highlighted by the finding that the extreme assumptions in SPARTACUS of “zero entrapment” and “maximum entrapment” lead to corresponding mean 3D radiative effects of 1.7 and 19.6 W m−2, respectively.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robin J. Hogan, r.j.hogan@ecmwf.int

Abstract

Several mechanisms have previously been proposed to explain differences between the shortwave reflectance of realistic cloud scenes computed using the 1D independent column approximation (ICA) and 3D solutions of the radiative transfer equation. When the sun is low in the sky, interception of sunlight by cloud sides tends to increase reflectance relative to ICA estimates that neglect this effect. When the sun is high, 3D radiative transfer tends to make clouds less reflective, which we argue is explained by the mechanism of “entrapment” whereby horizontal transport of radiation beneath a cloud layer increases the chances, relative to the ICA, of light being absorbed by cloud or the surface. It is especially important for multilayered cloud scenes. We describe modifications to the previously described Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS) to represent different entrapment assumptions, and test their impact on 65 contrasting scenes from a cloud-resolving model. When entrapment is represented explicitly via a calculation of the mean horizontal distance traveled by reflected light, SPARTACUS predicts a mean “3D radiative effect” (the difference in top-of-atmosphere irradiances between 3D and ICA calculations) of 8.1 W m−2 for overhead sun. This is within 2% of broadband Monte Carlo calculations on the same scenes. The importance of entrapment is highlighted by the finding that the extreme assumptions in SPARTACUS of “zero entrapment” and “maximum entrapment” lead to corresponding mean 3D radiative effects of 1.7 and 19.6 W m−2, respectively.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robin J. Hogan, r.j.hogan@ecmwf.int
Save