Axisymmetric Potential Vorticity Evolution of Hurricane Patricia (2015)

Jonathan Martinez Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Jonathan Martinez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0510-5982
,
Michael M. Bell Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Michael M. Bell in
Current site
Google Scholar
PubMed
Close
,
Robert F. Rogers Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Robert F. Rogers in
Current site
Google Scholar
PubMed
Close
, and
James D. Doyle U.S. Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Operational numerical models failed to predict the record-setting rapid intensification and rapid overwater weakening of Hurricane Patricia (2015) in the eastern North Pacific basin, resulting in large intensity forecast errors. In an effort to better understand the mesoscale processes contributing to Patricia’s rapid intensity changes, we analyze high-resolution aircraft observations collected on 22–23 October. Spline-based variational analyses are created from observations collected via in situ measurements, Doppler radar, and full-tropospheric dropsonde profiles as part of the Office of Naval Research Tropical Cyclone Intensity (TCI) experiment and the National Oceanic and Atmospheric Administration Intensity Forecasting Experiment (IFEX). We present the first full-tropospheric calculation of the dry, axisymmetric Ertel’s potential vorticity (PV) in a tropical cyclone without relying on balance assumptions. Detailed analyses reveal the formation of a “hollow tower” PV structure as Patricia rapidly approached its maximum intensity, and a subsequent breakdown of this structure during Patricia’s rapid overwater weakening phase. Transforming the axisymmetric PV analyses from radius–height to potential radius–isentropic coordinates reveals that Patricia’s rapid intensification was closely related to the distribution of diabatic heating and eddy mixing. During Patricia’s rapid overwater weakening phase, eddy mixing processes are hypothesized to be the primary factor rearranging the PV distribution near the eye–eyewall region, diluting the PV previously confined to the hollow tower while approximately conserving the absolute circulation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Martinez, jon.martinez@colostate.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

Operational numerical models failed to predict the record-setting rapid intensification and rapid overwater weakening of Hurricane Patricia (2015) in the eastern North Pacific basin, resulting in large intensity forecast errors. In an effort to better understand the mesoscale processes contributing to Patricia’s rapid intensity changes, we analyze high-resolution aircraft observations collected on 22–23 October. Spline-based variational analyses are created from observations collected via in situ measurements, Doppler radar, and full-tropospheric dropsonde profiles as part of the Office of Naval Research Tropical Cyclone Intensity (TCI) experiment and the National Oceanic and Atmospheric Administration Intensity Forecasting Experiment (IFEX). We present the first full-tropospheric calculation of the dry, axisymmetric Ertel’s potential vorticity (PV) in a tropical cyclone without relying on balance assumptions. Detailed analyses reveal the formation of a “hollow tower” PV structure as Patricia rapidly approached its maximum intensity, and a subsequent breakdown of this structure during Patricia’s rapid overwater weakening phase. Transforming the axisymmetric PV analyses from radius–height to potential radius–isentropic coordinates reveals that Patricia’s rapid intensification was closely related to the distribution of diabatic heating and eddy mixing. During Patricia’s rapid overwater weakening phase, eddy mixing processes are hypothesized to be the primary factor rearranging the PV distribution near the eye–eyewall region, diluting the PV previously confined to the hollow tower while approximately conserving the absolute circulation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Martinez, jon.martinez@colostate.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, https://doi.org/10.1175/2007MWR1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973122, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., W.-C. Lee, C. A. Wolff, and H. Cai, 2013: A solo-based automated quality control algorithm for airborne tail Doppler radar data. J. Appl. Meteor. Climatol., 52, 25092528, https://doi.org/10.1175/JAMC-D-12-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and Coauthors, 2016: ONR tropical cyclone intensity 2015 NASA WB-57 dropsonde data, version 1.0. UCAR–NCAR Earth Observing Laboratory, accessed 23 January 2017, https://doi.org/10.5065/D6KW5D8M.

    • Crossref
    • Export Citation
  • Black, P., L. Harrison, M. Beaubien, R. Bluth, R. Woods, A. Penny, R. W. Smith, and J. D. Doyle, 2017: High-Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777796, https://doi.org/10.1175/JTECH-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, H., W.-C. Lee, M. M. Bell, C. A. Wolff, X. Tang, and F. Roux, 2018: A generalized navigation correction method for airborne Doppler radar data. J. Atmos. Oceanic Technol., 35, 19992017, https://doi.org/10.1175/JTECH-D-18-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841, https://doi.org/10.1175/1520-0493(2002)130<0825:FLTIWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, E., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Nor., 5, 1960.

  • Ertel, H., 1942: Ein neuer hydrodynamischer erhaltungssatz. Naturwissenschaften, 30, 543544, https://doi.org/10.1007/BF01475602.

  • Foerster, A. M., and M. M. Bell, 2017: Thermodynamic retrieval in rapidly rotating vortices from multiple-Doppler radar data. J. Atmos. Oceanic Technol., 34, 23532374, https://doi.org/10.1175/JTECH-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., M. M. Bell, P. A. Harr, and S. C. Jones, 2014: Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev., 142, 33723392, https://doi.org/10.1175/MWR-D-13-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. J. Lord, and F. D. Marks Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116, 12371244, https://doi.org/10.1175/1520-0493(1988)116<1237:DAROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, https://doi.org/10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., V. K. Ooyama, and W. H. Schubert, 2006: Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63, 87108, https://doi.org/10.1175/JAS3601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst., 2 (1), https://doi.org/10.3894/JAMES.2010.2.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, https://doi.org/10.1175/2008JAS2820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., B. D. McNoldy, and W. H. Schubert, 2012: Observed inner-core structural variability in Hurricane Dolly (2008). Mon. Wea. Rev., 140, 40664077, https://doi.org/10.1175/MWR-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, Y.-H. Chen, H.-C. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 16231643, https://doi.org/10.1175/JAS-D-13-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Nature, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1961: Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. J. Meteor., 18, 779789, https://doi.org/10.1175/1520-0469(1961)018<0779:MCITCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and D.-L. Zhang, 2010: A piecewise potential vorticity inversion algorithm and its application to hurricane inner-core anomalies. J. Atmos. Sci., 67, 26162131, https://doi.org/10.1175/2010JAS3421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., E. S. Blake, and J. P. Cangialosi, 2016: Hurricane Patricia. National Hurricane Center Tropical Cyclone Rep., 32 pp.

  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, https://doi.org/10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze Jr., and J. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, https://doi.org/10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J., M. M. Bell, J. L. Vigh, and R. F. Rogers, 2017: Examining tropical cyclone structure and intensification with the FLIGHT+ dataset from 1999 to 2012. Mon. Wea. Rev., 145, 44014421, https://doi.org/10.1175/MWR-D-17-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and R. K. Smith, 1994: The development of potential vorticity in a hurricane-like vortex. Quart. J. Roy. Meteor. Soc., 120, 12551265, https://doi.org/10.1002/qj.49712051907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 16741687, https://doi.org/10.1175/1520-0469(1999)056<1674:VRWAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 33663387, https://doi.org/10.1175/1520-0469(2000)057<3366:TCEVPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52, 18291833, https://doi.org/10.1175/1520-0469(1995)052<1829:GCAFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2002: The cubic-spline transform method: Basic definitions and tests in a 1D single domain. Mon. Wea. Rev., 130, 23922415, https://doi.org/10.1175/1520-0493(2002)130<2392:TCSTMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclone intensification. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment (IFEX): A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537, https://doi.org/10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013a: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013b: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, https://doi.org/10.1175/BAMS-D-12-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roux, F., V. Marécal, and D. Hauser, 1993: The 12/13 January 1988 narrow cold-frontal rainband observed during MFDP/FRONTS 87. Part I: Kinematics and thermodynamics. J. Atmos. Sci., 50, 951974, https://doi.org/10.1175/1520-0469(1993)050<0951:TJNCFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, https://doi.org/10.1175/2008JAS2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, https://doi.org/10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 2004: A generalization of Ertel’s potential vorticity to a cloudy, precipitating atmosphere. Meteor. Z., 13, 465471, https://doi.org/10.1127/0941-2948/2004/0013-0465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. J. Atmos. Sci., 40, 15711583, https://doi.org/10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and B. T. Alworth, 1987: Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113, 147162, https://doi.org/10.1002/qj.49711347509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, and H.-C. Kuo, 2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 31483157, https://doi.org/10.1175/1520-0469(2001)058<3148:PVIAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124, 24972508, https://doi.org/10.1175/1520-0493(1996)124<2497:TMOHGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and J. L. Franklin, 1995: Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123, 14651475, https://doi.org/10.1175/1520-0493(1995)123<1465:PVIHG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 2006: Accurate determination of a balanced axisymmetric vortex in a compressible atmosphere. Tellus, 58A, 98103, https://doi.org/10.1111/j.1600-0870.2006.00149.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Bui, 2018: Axisymmetric balance dynamics of tropical cyclone intensification and its breakdown revisited. J. Atmos. Sci., 75, 31693189, https://doi.org/10.1175/JAS-D-17-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600, https://doi.org/10.1175/2009JAS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 27472762, https://doi.org/10.1175/JAS-D-13-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. Nieman, W. P. Menzel, and J. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, https://doi.org/10.1175/BAMS-86-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, https://doi.org/10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763, https://doi.org/10.1175/1520-0493(2002)130<2745:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with slowly moving gate convective band. J. Atmos. Sci., 38, 17251750, https://doi.org/10.1175/1520-0469(1981)038<1725:MMFAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11942 9167 234
PDF Downloads 1109 196 20