• Adames, A. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 46614681, https://doi.org/10.1175/JAS-D-14-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, A. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, A. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, https://doi.org/10.1175/JAS-D-13-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and F. Zhang, 2019: Relative roles of preconditioning moistening and global circumnavigating mode on the MJO convective initiation during DYNAMO. Geophys. Res. Lett., 46, 10791087, https://doi.org/10.1029/2018GL080987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014a: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AIME: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, K. Yoneyama, and R. K. Taft, 2014b: Mitigation of Sri Lanka island effects in Colombo sounding data and its impact on DYNAMO analysis. J. Meteor. Soc. Japan, 92, 385405, https://doi.org/10.2151/jmsj.2014-407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elseberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2002: Large-scale modes of a non-rotating atmosphere with water vapor and cloud-radiation feedbacks. J. Atmos. Sci., 59, 16691679, https://doi.org/10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative–convective instability and WISHE. J. Atmos. Sci., 62, 40844094, https://doi.org/10.1175/JAS3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344354, https://doi.org/10.1111/j.1600-0870.2007.00230.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, https://doi.org/10.1002/2017MS000963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gahtan, J., and P. Roundy, 2019: Extratropical influence on 200-hPa easterly acceleration over the western Indian Ocean preceding Madden–Julian oscillation convective onset. J. Atmos. Sci., 76, 265284, https://doi.org/10.1175/JAS-D-18-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjorgjievska, S., and D. J. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 30653082, https://doi.org/10.5194/acp-14-3065-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N. M., S. Thibaut, and P. Marchesiello, 2017: Impact of the observed extratropics on climatological simulations of the MJO in a tropical channel model. Climate Dyn., 48, 25412555, https://doi.org/10.1007/s00382-016-3221-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture-convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, https://doi.org/10.1175/2011JCLI3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, https://doi.org/10.1002/2013MS000272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, M. J., and D. J. Raymond, 2014: WTG cloud modeling with spectral decomposition of heating. J. Adv. Model. Earth Syst., 6, 11211140, https://doi.org/10.1002/2014MS000359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2015a: Column-integrated moist static energy budget analysis on various time scales during TOGA-COARE. J. Atmos. Sci., 72, 18561871, https://doi.org/10.1175/JAS-D-14-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2015b: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 41484166, https://doi.org/10.1175/JAS-D-15-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2017: Gross moist stability analysis: Assessment of satellite-based products in the GMS plane. J. Atmos. Sci., 74, 18191837, https://doi.org/10.1175/JAS-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013a: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013b: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert Jr., and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2018: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: Slow Kelvin waves as building blocks. Climate Dyn., 50, 42114230, https://doi.org/10.1007/s00382-017-3869-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Carrillo, C., and D. J. Raymond, 2005: Moisture tendency equations in a tropical atmosphere. J. Atmos. Sci., 62, 16011613, https://doi.org/10.1175/JAS3424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, https://doi.org/10.1073/pnas.0903367106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and B. O. Wolding, 2015: Initiation of an intraseasonal oscillation in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 7, 19561976, https://doi.org/10.1002/2015MS000495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2012: Short-term versus climatological relationship between precipitation and tropospheric humidity. J. Climate, 25, 79837990, https://doi.org/10.1175/JCLI-D-12-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and T. S. L’Ecuyer, 2014: A mechanism of tropical convection inferred from observed variability in the moist static energy budget. J. Atmos. Sci., 71, 37473766, https://doi.org/10.1175/JAS-D-14-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and et al. , 2012: The pre-depression investigation of cloud systems in the tropics (PREDICT) experiment. Bull. Amer. Meteor. Soc., 93, 153172, https://doi.org/10.1175/BAMS-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., T. Li, and K. Kikuchi, 2015: Moistening processes before the convective initiation of Madden–Julian oscillation events during the CINDY2011/DYNAMO period. Mon. Wea. Rev., 143, 622642, https://doi.org/10.1175/MWR-D-14-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 11 August 2018, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytic theory. J. Atmos. Sci., 51, 18761894, https://doi.org/10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., D. Waliser, and X. Jiang, 2017: Model performance metrics and process diagnostics for boreal summer intraseasonal variability. Climate Dyn., 48, 16611683, https://doi.org/10.1007/S00382-016-3166-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369379, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, https://doi.org/10.1038/nphys314.

  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, https://doi.org/10.1175/JAS-D-13-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876893, https://doi.org/10.1175/JAS-D-12-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, https://doi.org/10.1002/qj.49712656406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, https://doi.org/10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2012: Balanced thermal structure of an intensifying tropical cyclone. Tellus, 64A, 19181, https://doi.org/10.3402/tellusa.v64i0.19181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2005: Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320, https://doi.org/10.1256/qj.03.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627640, https://doi.org/10.1111/j.1600-0870.2007.00268.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, https://doi.org/10.1029/2006GL028607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, https://doi.org/10.1175/2008JCLI2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. M. Flores, 2016: Predicting convective rainfall over tropical oceans from environmental conditions. J. Adv. Model. Earth Syst., 8, 703718, https://doi.org/10.1002/2015MS000595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and Ž. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 17431754, https://doi.org/10.1002/qj.125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López-Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, https://doi.org/10.1029/2011JD015624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Gjorgjievska, S. Sessions, and Z. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Ocean. J., 64, 1125, https://doi.org/10.22499/2.6401.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., Ž. Fuchs, S. Gjorgjievska, and S. Sessions, 2015: Balanced dynamics and convection in the tropical troposphere. J. Adv. Model. Earth Syst., 7, 10931116, https://doi.org/10.1002/2015MS000467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sentić, S., S. L. Sessions, and Ž. Fuchs, 2015: Diagnosing DYNAMO convection with weak temperature gradient simulations. J. Adv. Model. Earth Syst., 7, 18491871, https://doi.org/10.1002/2015MS000531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System Model: The importance of stratiform heating. J. Climate, 23, 47704793, https://doi.org/10.1175/2010JCLI2983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., M. J. Herman, and S. Sentić, 2015: Convective response to changes in the thermodynamic environment in idealized weak temperature gradient simulations. J. Adv. Model. Earth Syst., 7, 712738, https://doi.org/10.1002/2015MS000446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., S. Sentić, and M. J. Herman, 2016: The role of radiation in organizing convection in weak temperature gradient simulations. J. Adv. Model. Earth Syst., 8, 244271, https://doi.org/10.1002/2015MS000587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Lett., 40, 43984403, https://doi.org/10.1002/grl.50796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden-Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009a: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523, https://doi.org/10.1175/2008JAS2690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009b: The moisture mode in the quasi-equilibrium tropical circulation model. Part II: Nonlinear behavior on an equatorial β plane. J. Atmos. Sci., 66, 15251542, https://doi.org/10.1175/2008JAS2691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065, https://doi.org/10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and Z. Kuang, 2013: Cloud-resolving simulation of TOGA-COARE using parameterized large scale dynamics. J. Geophys. Res., 118, 62906301, https://doi.org/10.1002/JGRD.50510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012a: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analysis. J. Atmos. Sci., 69, 316, https://doi.org/10.1175/JAS-D-11-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. Mapes, 2012b: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. J. Atmos. Sci., 69, 1734, https://doi.org/10.1175/JAS-D-11-034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, Y., and F. Zhang, 2017: Practical and intrinsic predictability of multiscale weather and convectively coupled equatorial waves during the active phase of an MJO. J. Atmos. Sci., 74, 37713785, https://doi.org/10.1175/JAS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. Taraphdar, and S. Wang, 2017: The role of global circumnavigating modes in the MJO initiation and propagation. J. Geophys. Res. Atmos., 122, 58375856, https://doi.org/10.1002/2016JD025665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, H., and H. H. Hendon, 2015: Role of large-scale moisture advection for simulation of the MJO with increased entrainment. Quart. J. Roy. Meteor. Soc., 141, 21272136, https://doi.org/10.1002/QJ.2510.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 10
PDF Downloads 45 45 10

Balanced Dynamics and Moisture Quasi-Equilibrium in DYNAMO Convection

View More View Less
  • 1 Department of Physics, and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 2 Climate and Water Consortium, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 3 Department of Physics, and Climate and Water Consortium, New Mexico Institute of Mining and Technology, Socorro, New Mexico
© Get Permissions
Restricted access

Abstract

Tropical convection that occurs on large-enough space and time scales may evolve in response to large-scale balanced circulations. In this scenario, large-scale midtropospheric vorticity anomalies modify the atmospheric stability by virtue of thermal wind gradient balance. The convective vertical mass flux and the moisture profile adjust to changes in atmospheric stability that affect moisture and entropy transport. We hypothesize that the convection observed during the 2011 DYNAMO field campaign evolves in response to balanced dynamics. Strong relationships between midtropospheric vorticity and atmospheric stability confirm the relationship between the dynamic and the thermodynamic environments, while robust relationships between the atmospheric stability, the vertical mass flux, and the saturation fraction provide evidence of moisture adjustment. These results are important because the part of convection that occurs as a response to balanced dynamics is potentially predictable. Furthermore, the diagnostics used in this work provide a simple framework for model evaluation, and suggest that one way to improve simulations of large-scale organized deep tropical convection in global models is to adequately capture the relationship between the dynamic and thermodynamic environments in convective parameterizations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sharon L. Sessions, sharon.sessions@nmt.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Tropical convection that occurs on large-enough space and time scales may evolve in response to large-scale balanced circulations. In this scenario, large-scale midtropospheric vorticity anomalies modify the atmospheric stability by virtue of thermal wind gradient balance. The convective vertical mass flux and the moisture profile adjust to changes in atmospheric stability that affect moisture and entropy transport. We hypothesize that the convection observed during the 2011 DYNAMO field campaign evolves in response to balanced dynamics. Strong relationships between midtropospheric vorticity and atmospheric stability confirm the relationship between the dynamic and the thermodynamic environments, while robust relationships between the atmospheric stability, the vertical mass flux, and the saturation fraction provide evidence of moisture adjustment. These results are important because the part of convection that occurs as a response to balanced dynamics is potentially predictable. Furthermore, the diagnostics used in this work provide a simple framework for model evaluation, and suggest that one way to improve simulations of large-scale organized deep tropical convection in global models is to adequately capture the relationship between the dynamic and thermodynamic environments in convective parameterizations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sharon L. Sessions, sharon.sessions@nmt.edu

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save