• Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, https://doi.org/10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Y.-H. Kuo, D. P. Baumhefner, R. M. Errico, and T. W. Bettge, 1985: Predictability of mesoscale atmospheric motions. Advances in Geophysics, Vol. 28B, Academic Press, 159202, https://doi.org/10.1016/S0065-2687(08)60188-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., T. Jung, and T. N. Palmer, 2012: Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate, 25, 49464962, https://doi.org/10.1175/JCLI-D-11-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., and et al. , 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Britt, K. C., P. S. Skinner, P. L. Heinselman, and K. H. Knopfmeier, 2018: Strengths and limitations of NSSL’s experimental Warn-on-Forecast system for ensembles in forecasting cyclic mesocyclogenesis. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 141, https://ams.confex.com/ams/29SLS/meetingapp.cgi/Paper/348411.

  • Bröcker, J., and L. A. Smith, 2008: From ensemble forecasts to predictive distribution functions. Tellus, 60A, 663678, https://doi.org/10.1111/j.1600-0870.2008.00333.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Burke, P. C., and D. M. Schultz, 2004: A 4-yr climatology of cold-season bow echoes over the continental United States. Wea. Forecasting, 19, 10611074, https://doi.org/10.1175/811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., and D. J. Stensrud, 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 19932011, https://doi.org/10.1175/JAS-D-12-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, https://doi.org/10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, M. J., and R. C. Murty, 1974: Thunderstorm-generated gravity waves. J. Atmos. Sci., 31, 14021408, https://doi.org/10.1175/1520-0469(1974)031<1402:TGGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and J. Levit, 1993: The sensitivity of numerically-simulated storm evolution to initial conditions. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 431–435.

  • Duc, L., K. Saito, and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. A. Weyn, 2016: Thunderstorms do not get butterflies. Bull. Amer. Meteor. Soc., 97, 237243, https://doi.org/10.1175/BAMS-D-15-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17, 873884, https://doi.org/10.1175/1520-0434(2002)017<0873:ECSMFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flora, M. L., C. K. Potvin, and L. J. Wicker, 2018: Practical predictability of supercells: Exploring ensemble forecast sensitivity to initial condition spread. Mon. Wea. Rev., 146, 23612379, https://doi.org/10.1175/MWR-D-17-0374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1990: Downbursts: Meteorological features and wind field characteristics. J. Wind Eng. Ind. Aerodyn., 36, 7586, https://doi.org/10.1016/0167-6105(90)90294-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, https://doi.org/10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, and E. E. Ebert, 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 13651373, https://doi.org/10.1175/2010BAMS2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleick, J., 1987: Chaos: Making A New Science. Vintage, 352 pp.

  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, https://doi.org/10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grebogi, C., E. Ott, and J. A. Yorke, 1987: Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science, 238, 632638, https://doi.org/10.1126/science.238.4827.632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., E. R. Nielsen, and R. S. Schumacher, 2018: Probabilistic verification of Storm Prediction Center convective outlooks. Wea. Forecasting, 33, 161184, https://doi.org/10.1175/WAF-D-17-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., D. Lüthi, and C. Schär, 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134, 20952107, https://doi.org/10.1175/MWR3176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, https://doi.org/10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus, M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, https://doi.org/10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and et al. , 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, J. C., E. W. McCaul Jr., and C. Cohen, 2007: The motion of simulated convective storms as a function of basic environmental parameters. Mon. Wea. Rev., 135, 30333051, https://doi.org/10.1175/MWR3447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, J. C., E. W. McCaul Jr., and C. Cohen, 2011: Sensitivities of simulated convective storms to environmental CAPE. Mon. Wea. Rev., 139, 35143532, https://doi.org/10.1175/2011MWR3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, https://doi.org/10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J., and W. A. Gallus Jr., 2016a: On contrasting ensemble simulations of two Great Plains bow echoes. Wea. Forecasting, 31, 787810, https://doi.org/10.1175/WAF-D-15-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J., and W. A. Gallus Jr., 2016b: Adapting the SAL method to evaluate reflectivity forecasts of summer precipitation in the central United States. Atmos. Sci. Lett., 17, 524530, https://doi.org/10.1002/asl.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, J., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., and M. J. Rodwell, 2014: Leveraging highly accurate data in diagnosing errors in atmospheric models. Bull. Amer. Meteor. Soc., 95, 12271233, https://doi.org/10.1175/BAMS-D-12-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillo, S. P., and D. B. Parsons, 2017: Investigating the dynamics of error growth in ECMWF medium-range forecast busts. Quart. J. Roy. Meteor. Soc., 143, 12111226, https://doi.org/10.1002/qj.2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43, 126140, https://doi.org/10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798, https://doi.org/10.1002/qj.49711649402.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1995: The Essence of Chaos. University of Washington Press, 227 pp.

  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Mid-latitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • McCaul, E. W., Jr., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, https://doi.org/10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMurdie, L. A., and B. Ancell, 2014: Predictability characteristics of landfalling cyclones along the North American West Coast. Mon. Wea. Rev., 142, 301319, https://doi.org/10.1175/MWR-D-13-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulder, K. J., and D. M. Schultz, 2015: Climatology, storm morphologies, and environments of tornadoes in the British Isles: 1980–2012. Mon. Wea. Rev., 143, 22242240, https://doi.org/10.1175/MWR-D-14-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., D. R. Bright, and M. J. Brennan, 2008: Operational forecaster uncertainty needs and future roles. Wea. Forecasting, 23, 10691084, https://doi.org/10.1175/2008WAF2222142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nusse, H. E., and J. A. Yorke, 1996: Basins of attraction. Science, 271, 13761380, https://doi.org/10.1126/science.271.5254.1376.

  • Palmer, T. N., 1988: Medium and extended range predictability and stability of the Pacific/North American mode. Quart. J. Roy. Meteor. Soc., 114, 691713, https://doi.org/10.1002/qj.49711448108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., A. Döring, and G. Seregin, 2014: The real butterfly effect. Nonlinearity, 27, R123, https://doi.org/10.1088/0951-7715/27/9/R123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and et al. , 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, P., and D. Durran, 2009: Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci., 66, 34013418, https://doi.org/10.1175/2009JAS3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and et al. , 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, https://doi.org/10.1175/BAMS-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schertzer, D., and S. Lovejoy, 1985: The dimension and intermittency of atmospheric dynamics. Turbulent Shear Flows 4, Springer, 7–33.

    • Crossref
    • Export Citation
  • Schultz, D., and P. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and et al. , 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, https://doi.org/10.1175/2009WAF2222267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., R. A. Pielke Sr., X. Zeng, S. Faghih-Naini, C. L. Shie, J. J. Baik, and T. A. L. Reyes, 2018: Butterfly effects of the first and second kinds: New insights revealed by high-dimensional Lorenz models. 11th Int. Conf. on Chaotic Modeling, Simulation and Applications, Rome, Italy.

  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., M. D. Parker, J. R. King, and G. M. Lackmann, 2016: Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Wea. Forecasting, 31, 18991927, https://doi.org/10.1175/WAF-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and et al. , 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 1225–1250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterk, A. E., D. B. Stephenson, M. P. Holland, and K. R. Mylne, 2016: On the predictability of extremes: Does the butterfly effect ever decrease? Quart. J. Roy. Meteor. Soc., 142, 5864, https://doi.org/10.1002/qj.2627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1978: Turbulent flow in two and three dimensions. Bull. Amer. Meteor. Soc., 59, 2228, https://doi.org/10.1175/1520-0477(1978)059<0022:TFITAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, https://doi.org/10.1175/WAF864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2008: On the predictability of mesoscale convective systems: Two-dimensional simulations. Wea. Forecasting, 23, 773785, https://doi.org/10.1175/2008WAF2007057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., D. J. Stensrud, S. L. Mullen, and L. J. Wicker, 2010: On the predictability of mesoscale convective systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885, https://doi.org/10.1175/2009MWR2961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, https://doi.org/10.1175/2008MWR2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1997: Chaos Theory Tamed. Joseph Henry Press, 499 pp.

    • Crossref
    • Export Citation
  • Yussouf, N., J. S. Kain, and A. J. Clark, 2016: Short-term probabilistic forecasts of the 31 May 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system. Wea. Forecasting, 31, 957983, https://doi.org/10.1175/WAF-D-15-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632, https://doi.org/10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., F. Zhang, D. J. Stensrud, and Z. Meng, 2016: Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 12731298, https://doi.org/10.1175/MWR-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 404 359
PDF Downloads 55 55 17

Predictability of Idealized Thunderstorms in Buoyancy–Shear Space

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

Thunderstorms are difficult to predict because of their small length scale and fast predictability destruction. A cell’s predictability is constrained by properties of the flow in which it is embedded (e.g., vertical wind shear), and associated instabilities (e.g., convective available potential energy). To assess how predictability of thunderstorms changes with environment, two groups of 780 idealized simulations (each using a different microphysics scheme) were performed over a range of buoyancy and shear profiles. Results were not sensitive to the scheme chosen. The gradient in diagnostics (updraft speed, storm speed, etc.) across shear–buoyancy phase space represents sensitivity to small changes in initial conditions: a proxy for inherent predictability. Storm evolution is split into two groups, separated by a U-shaped bifurcation in phase space, comprising 1) cells that continue strengthening after 1 h versus 2) those that weaken. Ensemble forecasts in regimes near this bifurcation are hence expected to have larger uncertainty, and adequate dispersion and reliability is essential. Predictability loss takes two forms: (i) chaotic error growth from the largest and most powerful storms, and (ii) tipping points at the U-shaped perimeter of the stronger storms. The former is associated with traditional forecast error between corresponding grid points, and is here counterintuitive; the latter is associated with object-based error, and matches the mental filtering performed by human forecasters for the convective scale.

Publisher’s Note: This article was revised on 3 September 2019 to correct a typographical error that switched the two panel labels in Fig. 7. The corresponding labels as identified in the accompanying text were also corrected.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Lawson, john.lawson@noaa.gov

Abstract

Thunderstorms are difficult to predict because of their small length scale and fast predictability destruction. A cell’s predictability is constrained by properties of the flow in which it is embedded (e.g., vertical wind shear), and associated instabilities (e.g., convective available potential energy). To assess how predictability of thunderstorms changes with environment, two groups of 780 idealized simulations (each using a different microphysics scheme) were performed over a range of buoyancy and shear profiles. Results were not sensitive to the scheme chosen. The gradient in diagnostics (updraft speed, storm speed, etc.) across shear–buoyancy phase space represents sensitivity to small changes in initial conditions: a proxy for inherent predictability. Storm evolution is split into two groups, separated by a U-shaped bifurcation in phase space, comprising 1) cells that continue strengthening after 1 h versus 2) those that weaken. Ensemble forecasts in regimes near this bifurcation are hence expected to have larger uncertainty, and adequate dispersion and reliability is essential. Predictability loss takes two forms: (i) chaotic error growth from the largest and most powerful storms, and (ii) tipping points at the U-shaped perimeter of the stronger storms. The former is associated with traditional forecast error between corresponding grid points, and is here counterintuitive; the latter is associated with object-based error, and matches the mental filtering performed by human forecasters for the convective scale.

Publisher’s Note: This article was revised on 3 September 2019 to correct a typographical error that switched the two panel labels in Fig. 7. The corresponding labels as identified in the accompanying text were also corrected.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Lawson, john.lawson@noaa.gov
Save