• Abel, S. J., D. N. Walters, and G. Allen, 2010: Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 54110 559, https://doi.org/10.5194/acp-10-10541-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, https://doi.org/10.1126/science.288.5468.1042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agrawal, H., Q. G. J. Malloy, W. A. Welch, J. W. Miller, and D. R. Cocker III, 2008: In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos. Environ., 42, 55045510, https://doi.org/10.1016/j.atmosenv.2008.02.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992, https://doi.org/10.1029/GL017i001p00089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amiri-Farahani, A., R. J. Allen, D. Neubauer, and U. Lohmann, 2017: Impact of Saharan dust on North Atlantic marine stratocumulus clouds: Importance of the semidirect effect. Atmos. Chem. Phys., 17, 63056322, https://doi.org/10.5194/acp-17-6305-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, A. Gadian, and R. Burton, 2012: Limited-area modelling of stratocumulus over south-eastern Pacific. Atmos. Chem. Phys., 12, 35113526, https://doi.org/10.5194/acp-12-3511-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., C. E. Dorman, C. A. Friehe, L. K. Rosenfeld, and C. D. Winant, 1987: Local atmospheric forcing during the Coastal Ocean Dynamics Experiment: 1. A description of the marine boundary layer and atmospheric conditions over a Northern California upwelling region. J. Geophys. Res., 92, 14671488, https://doi.org/10.1029/JC092iC02p01467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206, https://doi.org/10.1016/0169-8095(94)90020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud droplet growth by collection. Part II: Single initial distributions. J. Atmos. Sci., 31, 21272135, https://doi.org/10.1175/1520-0469(1974)031<2127:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., C. F. Mass, and J. E. Overland, 1996: Coastally trapped wind reversals along the United States West Coast during the warm season. Part I: Climatology and temporal evolution. Mon. Wea. Rev., 124, 430445, https://doi.org/10.1175/1520-0493(1996)124<0430:CTWRAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Braun, R. A., and et al. , 2017: Impact of wildfire emissions on chloride and bromide depletion in marine aerosol particles. Environ. Sci. Technol., 51, 90139021, https://doi.org/10.1021/acs.est.7b02039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and et al. , 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B, 815827, https://doi.org/10.1034/j.1600-0889.2000.00047.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., F. Burnet, and O. Geoffroy, 2011: Cloud optical thickness and liquid water path—Does the k coefficient vary with droplet concentration? Atmos. Chem. Phys., 11, 97719786, https://doi.org/10.5194/acp-11-9771-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Wang, and J. Chen, 2015: Aerosol–stratocumulus–radiation interactions over the southeast Pacific. J. Atmos. Sci., 72, 26122621, https://doi.org/10.1175/JAS-D-14-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., L. Xue, Z. J. Lebo, H. Wang, R. M. Rasmussen, and J. H. Seinfeld, 2011: A comprehensive numerical study of aerosol–cloud–precipitation interactions in marine stratocumulus. Atmos. Chem. Phys., 11, 97499769, https://doi.org/10.5194/acp-11-9749-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coggon, M. M., and et al. , 2012: Ship impacts on the marine atmosphere: Insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmos. Chem. Phys., 12, 84398458, https://doi.org/10.5194/acp-12-8439-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosbie, E., and et al. , 2016: Stratocumulus cloud clearings and notable thermodynamic and aerosol contrasts across the clear–cloudy interface. J. Atmos. Sci., 73, 10831099, https://doi.org/10.1175/JAS-D-15-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., 1985: Evidence of kelvin waves in California’s marine layer and related eddy generation. Mon. Wea. Rev., 113, 827839, https://doi.org/10.1175/1520-0493(1985)113<0827:EOKWIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., L. Washburn, C. E. Dorman, C. Gotschalk, and K. Lombardo, 2016: Synoptic forcing of wind relaxations at Pt. Conception, California. J. Geophys. Res. Oceans, 121, 57115730, https://doi.org/10.1002/2016JC011699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, K. R., M. R. Fewings, C. Gotschalk, and K. Lombardo, 2017: Large-scale anomalies in sea-surface temperature and air-sea fluxes during wind relaxation events off the United States West Coast in summer. J. Geophys. Res. Oceans, 122, 25742594, https://doi.org/10.1002/2016JC012613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furutani, H., J. Jung, K. Miura, A. Takami, S. Kato, Y. Kajii, and M. Uematsu, 2011: Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow. J. Geophys. Res., 116, D18204, https://doi.org/10.1029/2011JD015867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, https://doi.org/10.1016/0169-8095(94)90001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., and P. V. Hobbs, 1986: Studies of the mechanisms and rate with which nitrogen species are incorporated into cloud water and precipitation. Coordinating Research Council Second Annual Rep. on Project CAPA-21-80.

  • Holtslag, A. A., and B. A. Boville, 1993: Local versus nonlocal boundary–layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. L. Kubar, S. Wong, W. S. Olson, and D. E. Waliser, 2014: Modulation of marine low clouds associated with the tropical intraseasonal variability over the eastern Pacific. J. Climate, 27, 55605574, https://doi.org/10.1175/JCLI-D-13-00569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juliano, T. W., Z. J. Lebo, G. Thompson, and D. A. Rahn, 2019: A new perspective on coastally trapped disturbances using data from the satellite era. Bull. Amer. Meteor. Soc., 100, 631651, https://doi.org/10.1175/BAMS-D-18-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, C. K., and S. S. Yum, 2017: Turbulence in marine fog. Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting, D. Koraĉin and C. E. Dorman, Eds., Springer, 245–271.

    • Crossref
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloesel, K. A., 1992: Marine stratocumulus cloud clearing episodes observed during FIRE. Mon. Wea. Rev., 120, 565578, https://doi.org/10.1175/1520-0493(1992)120<0565:MSCCEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., and C. E. Dorman, Eds., 2017: Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer, 537 pp.

    • Crossref
    • Export Citation
  • Lee, H., and J. Baik, 2017: A physically based autoconversion parameterization. J. Atmos. Sci., 74, 15991616, https://doi.org/10.1175/JAS-D-16-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mardi, A. H., and et al. , 2018: Biomass burning plumes in the vicinity of the California coast: Airborne characterization of physicochemical properties, heating rates, and spatiotemporal features. J. Geophys. Res. Atmos., 123, 13 56013 582, https://doi.org/10.1029/2018JD029134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., M. Bush, A. R. Brown, A. P. Lock, and R. N. Smith, 2000: A new boundary layer mixing scheme. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128, 32003217, https://doi.org/10.1175/1520-0493(2000)128<3200:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and N. A. Bond, 1996: Coastally trapped wind reversals along the United States West Coast during the warm season. Part II: Synoptic evolution. Mon. Wea. Rev., 124, 446461, https://doi.org/10.1175/1520-0493(1996)124<0446:CTWRAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and W. J. Steenburgh, 2000: An observational and numerical study of an orographically trapped wind reversal along the West Coast of the United States. Mon. Wea. Rev., 128, 23632397, https://doi.org/10.1175/1520-0493(2000)128<2363:AOANSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maudlin, L. C., Z. Wang, H. H. Jonsson, and A. Sorooshian, 2015: Impact of wildfires on size-resolved aerosol composition at a coastal California site. Atmos. Environ., 119, 5968, https://doi.org/10.1016/j.atmosenv.2015.08.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mocko, D. M., and W. R. Cotton, 1995: Evaluation of fractional cloudiness parameterizations for use in a mesoscale model. J. Atmos. Sci., 52, 28842901, https://doi.org/10.1175/1520-0469(1995)052<2884:EOFCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiburger, M., D. S. Johnson, and C. W. Chien, 1961: Studies of the structure of the atmosphere over the eastern Pacific ocean in the summer. The Inversion over the Eastern North Pacific Ocean, University of California Press, 1–94.

  • Nuss, W. A., and et al. , 2000: Coastally trapped wind reversals: Progress toward understanding. Bull. Amer. Meteor. Soc., 81, 719743, https://doi.org/10.1175/1520-0477(2000)081<0719:CTWRPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2008: Aircraft observations of a coastally trapped wind reversal off the California coast. Mon. Wea. Rev., 136, 644663, https://doi.org/10.1175/2007MWR2199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., and J.-L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108, 8630, https://doi.org/10.1029/2002JD002679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabhakar, G., B. Ervens, Z. Wang, L. C. Maudlin, M. M. Coggon, H. H. Jonsson, J. H. Seinfeld, and A. Sorooshian, 2014: Sources of nitrate in stratocumulus cloud water: Airborne measurements during the 2011 E-PEACE and 2013 NiCE studies. Atmos. Environ., 97, 166173, https://doi.org/10.1016/j.atmosenv.2014.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and T. R. Parish, 2008: A study of the forcing of the 22–25 June 2006 coastally trapped wind reversal based on numerical simulations and aircraft observations. Mon. Wea. Rev., 136, 46874708, https://doi.org/10.1175/2008MWR2361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. Garreaud, 2010: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx—Part 1: Mean structure and diurnal cycle. Atmos. Chem. Phys., 10, 44914506, https://doi.org/10.5194/acp-10-4491-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and T. R. Parish, 2010: Cessation of the 22–25 June 2006 coastally trapped wind reversal. J. Appl. Meteor. Climatol., 49, 14121428, https://doi.org/10.1175/2010JAMC2242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., T. R. Parish, and D. Leon, 2016: Observations of large wind shear above the marine boundary layer near Point Buchon, California. J. Atmos. Sci., 73, 30593077, https://doi.org/10.1175/JAS-D-15-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley, D. H. Lenschow, C. W. Fairall, and R. A. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 12901301, https://doi.org/10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 1976: Experiments with Lilly’s cloud-topped mixed layer model. J. Atmos. Sci., 33, 436446, https://doi.org/10.1175/1520-0469(1976)033<0436:EWLCTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics. 3rd ed. Wiley, 1152 pp.

  • Snider, J. R., D. Leon, and Z. Wang, 2017: Droplet concentration and spectral broadening in southeast Pacific stratocumulus clouds. J. Atmos. Sci., 74, 719749, https://doi.org/10.1175/JAS-D-16-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., and et al. , 2018: A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds. Sci. Data, 5 180026, https://doi.org/10.1038/SDATA.2018.26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., and J. L. Coen, 1992: New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor. J. Atmos. Sci., 49, 16431651, https://doi.org/10.1175/1520-0469(1992)049<1643:NEEFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 20592077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657, https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and et al. , 2004: Implementation and verification of the unified NOAH land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 11–15.

  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., S. D. Burke, and J. Lewis, 2005: Fog and low clouds in a coastally trapped disturbance. J. Geophys. Res., 110, D18213, https://doi.org/10.1029/2004JD005522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 27762793, https://doi.org/10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to the cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 28712880, https://doi.org/10.1175/1520-0469(1990)047<2871:ASTTCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and et al. , 2011: A regional real-time forecast of marine boundary layers during VOCALS-REx. Atmos. Chem. Phys., 11, 421437, https://doi.org/10.5194/acp-11-421-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, https://doi.org/10.1175/2010MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, https://doi.org/10.1175/JCLI3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and et al. , 2007: A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer. J. Geophys. Res., 112, D24204, https://doi.org/10.1029/2007JD008536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and et al. , 2010: The PreVOCA experiment: Modeling the lower troposphere in the Southeast Pacific. Atmos. Chem. Phys., 10, 47574774, https://doi.org/10.5194/acp-10-4757-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and et al. , 2015: Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: The VOCA intercomparison. Atmos. Chem. Phys., 15, 153172, https://doi.org/10.5194/acp-15-153-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and et al. , 2018: Characteristics of marine shipping emissions at berth: Profiles for particulate matter and volatile organic compounds. Atmos. Chem. Phys., 18, 95279545, https://doi.org/10.5194/acp-18-9527-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., G. Feingold, and V. E. Larson, 2017: Framework for improvement by vertical enhancement: A simple approach to improve representation of low and high-level clouds in large-scale models. J. Adv. Model. Earth Syst., 9, 627646, https://doi.org/10.1002/2016MS000815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., and et al. , 2011: Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem. Atmos. Chem. Phys., 11, 11 95111 975, https://doi.org/10.5194/acp-11-11951-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H., and et al. , 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613666, https://doi.org/10.5194/acp-6-613-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and et al. , 2005: Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 133, 27412758, https://doi.org/10.1175/MWR2997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 21
PDF Downloads 75 75 16

Marine Boundary Layer Clouds Associated with Coastally Trapped Disturbances: Observations and Model Simulations

View More View Less
  • 1 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 3 National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado
  • | 4 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas
  • | 5 Department of Chemical Engineering, California Institute of Technology, Pasadena, California
  • | 6 Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, Arizona
  • | 7 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • | 8 Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
© Get Permissions
Restricted access

Abstract

Modeling marine low clouds and fog in coastal environments remains an outstanding challenge due to the inherently complex ocean–land–atmosphere system. This is especially important in the context of global circulation models due to the profound radiative impact of these clouds. This study utilizes aircraft and satellite measurements, in addition to numerical simulations using the Weather Research and Forecasting (WRF) Model, to examine three well-observed coastally trapped disturbance (CTD) events from June 2006, July 2011, and July 2015. Cloud water-soluble ionic and elemental composition analyses conducted for two of the CTD cases indicate that anthropogenic aerosol sources may impact CTD cloud decks due to synoptic-scale patterns associated with CTD initiation. In general, the dynamics and thermodynamics of the CTD systems are well represented and are relatively insensitive to the choice of physics parameterizations; however, a set of WRF simulations suggests that the treatment of model physics strongly influences CTD cloud field evolution. Specifically, cloud liquid water path (LWP) is highly sensitive to the choice of the planetary boundary layer (PBL) scheme; in many instances, the PBL scheme affects cloud extent and LWP values as much as or more than the microphysics scheme. Results suggest that differences in the treatment of entrainment and vertical mixing in the Yonsei University (nonlocal) and Mellor–Yamada–Janjić (local) PBL schemes may play a significant role. The impact of using different driving models—namely, the North American Mesoscale Forecast System (NAM) 12-km analysis and the NCEP North American Regional Reanalysis (NARR) 32-km products—is also investigated.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy W. Juliano, tjuliano@ucar.edu

Abstract

Modeling marine low clouds and fog in coastal environments remains an outstanding challenge due to the inherently complex ocean–land–atmosphere system. This is especially important in the context of global circulation models due to the profound radiative impact of these clouds. This study utilizes aircraft and satellite measurements, in addition to numerical simulations using the Weather Research and Forecasting (WRF) Model, to examine three well-observed coastally trapped disturbance (CTD) events from June 2006, July 2011, and July 2015. Cloud water-soluble ionic and elemental composition analyses conducted for two of the CTD cases indicate that anthropogenic aerosol sources may impact CTD cloud decks due to synoptic-scale patterns associated with CTD initiation. In general, the dynamics and thermodynamics of the CTD systems are well represented and are relatively insensitive to the choice of physics parameterizations; however, a set of WRF simulations suggests that the treatment of model physics strongly influences CTD cloud field evolution. Specifically, cloud liquid water path (LWP) is highly sensitive to the choice of the planetary boundary layer (PBL) scheme; in many instances, the PBL scheme affects cloud extent and LWP values as much as or more than the microphysics scheme. Results suggest that differences in the treatment of entrainment and vertical mixing in the Yonsei University (nonlocal) and Mellor–Yamada–Janjić (local) PBL schemes may play a significant role. The impact of using different driving models—namely, the North American Mesoscale Forecast System (NAM) 12-km analysis and the NCEP North American Regional Reanalysis (NARR) 32-km products—is also investigated.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy W. Juliano, tjuliano@ucar.edu
Save