• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 15251548, https://doi.org/10.1002/qj.49712152703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, https://doi.org/10.1016/j.atmosres.2012.04.002.

  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193, https://doi.org/10.1175/2010JAS3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M. S. Yao, and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, https://doi.org/10.1029/2007GL030525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906, https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., 2012: A mechanism for land–ocean contrasts in global monsoon trends in a warming climate. Climate Dyn., 39, 11371147, https://doi.org/10.1007/s00382-011-1270-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412417, https://doi.org/10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., A. S. Ackerman, and J. A. Smith, 2007: Can overshooting convection dehydrate the tropical tropopause layer? J. Geophys. Res., 112, D11209, https://doi.org/10.1029/2006JD007943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, https://doi.org/10.1175/JAS3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lepore, C., D. Veneziano, and A. Molini, 2015: Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett., 42, 7483, https://doi.org/10.1002/2014GL062247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C., and A. Arakawa, 1997: The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 10271043, https://doi.org/10.1175/1520-0469(1997)054<1027:TMEPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800, https://doi.org/10.1175/2011JCLI3876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parodi, A., and K. A. Emanuel, 2009: A theory for buoyancy and velocity scales in deep moist convection. J. Atmos. Sci., 66, 34493463, https://doi.org/10.1175/2009JAS3103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., 2016: The mean air flow as Lagrangian dynamics approximation and its application to moist convection. J. Atmos. Sci., 73, 44074425, https://doi.org/10.1175/JAS-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci., 70, 36733688, https://doi.org/10.1175/JAS-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275, https://doi.org/10.1175/1520-0469(1996)053<3265:MCSSIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138, https://doi.org/10.1175/2010JAS3542.1.

  • Romps, D. M., and Z. Kuang, 2010a: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, https://doi.org/10.1175/2009JAS3307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010b: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, https://doi.org/10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and R. Öktem, 2015: Stereo photogrammetry reveals substantial drag on cloud thermals. Geophys. Res. Lett., 42, 50515057, https://doi.org/10.1002/2015GL064009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851854, https://doi.org/10.1126/science.1259100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015: Why does tropical convective available potential energy (CAPE) increase with warming? Geophys. Res. Lett., 42, 10 42910 437, https://doi.org/10.1002/2015GL066199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2001: A model for transport across the tropical tropopause. J. Atmos. Sci., 58, 765779, https://doi.org/10.1175/1520-0469(2001)058<0765:AMFTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Lett., 40, 43984403, https://doi.org/10.1002/grl.50796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2015: Increases in moist-convective updraft velocities with warming in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 141, 28282838, https://doi.org/10.1002/qj.2567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, E. D. Maloney, W. M. Hannah, and B. O. Wolding, 2017: Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc. Natl. Acad. Sci. USA, 114, 11 65711 662, https://doi.org/10.1073/pnas.1707603114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and S. J. Camargo, 2011: Projected future changes in tropical summer climate. J. Climate, 24, 473487, https://doi.org/10.1175/2010JCLI3748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4, 9194, https://doi.org/10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, T. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci., 48, 112121, https://doi.org/10.1175/1520-0469(1991)048<0112:EADICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998: Radiative–convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124, 20732097, https://doi.org/10.1256/SMSQJ.55012.

    • Search Google Scholar
    • Export Citation
  • Wagner, T. M., and H. F. Graf, 2010: An ensemble cumulus convection parameterization with explicit cloud treatment. J. Atmos. Sci., 67, 38543869, https://doi.org/10.1175/2010JAS3485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. Rutledge, S. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395, https://doi.org/10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, https://doi.org/10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 15
PDF Downloads 110 110 11

A Conceptual Spectral Plume Model for Understanding Tropical Temperature Profile and Convective Updraft Velocities

View More View Less
  • 1 Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The tropical tropospheric temperature is close to but typically cooler than that of the moist adiabat. The negative temperature deviation from the moist adiabat manifests a C-shape profile and is projected to increase and stretch upward under warming in both comprehensive climate models and idealized radiative–convective equilibrium (RCE) simulations. The increased temperature deviation corresponds to a larger convective available potential energy (CAPE) under warming. The extreme convective updraft velocity in RCE increases correspondingly but at a smaller fractional rate than that of CAPE. A conceptual model for the tropical temperature deviation and convective updraft velocities is formulated to understand these features. The model builds on the previous zero-buoyancy model but replaces the bulk zero-buoyancy plume by a spectrum of entraining plumes that have distinct entrainment rates and are positively buoyant until their levels of neutral buoyancy. Besides the negative temperature deviation and its increasing magnitude with warming, this allows the spectral plume model to further predict the C-shape profile as well as its upward stretch with warming. By representing extreme convective updrafts as weakly entraining plumes, the model is able to reproduce the smaller fractional increase in convective velocities with warming as compared to that of CAPE. The smaller fractional increase is mainly caused by the upward stretch in the temperature deviation profile with warming, which reduces the ratio between the integrated plume buoyancy and CAPE. The model thus provides a useful tool for understanding the tropical temperature profile and convective updraft velocities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenyu Zhou, zhouwy1128@gmail.com

Abstract

The tropical tropospheric temperature is close to but typically cooler than that of the moist adiabat. The negative temperature deviation from the moist adiabat manifests a C-shape profile and is projected to increase and stretch upward under warming in both comprehensive climate models and idealized radiative–convective equilibrium (RCE) simulations. The increased temperature deviation corresponds to a larger convective available potential energy (CAPE) under warming. The extreme convective updraft velocity in RCE increases correspondingly but at a smaller fractional rate than that of CAPE. A conceptual model for the tropical temperature deviation and convective updraft velocities is formulated to understand these features. The model builds on the previous zero-buoyancy model but replaces the bulk zero-buoyancy plume by a spectrum of entraining plumes that have distinct entrainment rates and are positively buoyant until their levels of neutral buoyancy. Besides the negative temperature deviation and its increasing magnitude with warming, this allows the spectral plume model to further predict the C-shape profile as well as its upward stretch with warming. By representing extreme convective updrafts as weakly entraining plumes, the model is able to reproduce the smaller fractional increase in convective velocities with warming as compared to that of CAPE. The smaller fractional increase is mainly caused by the upward stretch in the temperature deviation profile with warming, which reduces the ratio between the integrated plume buoyancy and CAPE. The model thus provides a useful tool for understanding the tropical temperature profile and convective updraft velocities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenyu Zhou, zhouwy1128@gmail.com
Save