• Achatz, U., B. Ribstein, F. Senf, and R. Klein, 2017: The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong stratification. Quart. J. Roy. Meteor. Soc., 143, 342361, https://doi.org/10.1002/qj.2926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and et al. , 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., C. Snyder, S. Park, and W. C. Skamarock, 2016: Accuracy of rotational and divergent kinetic energy spectra diagnosed from flight-track winds. J. Atmos. Sci., 73, 32733286, https://doi.org/10.1175/JAS-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., T. Selz, and G. C. Craig, 2018: Theoretical aspects of upscale error growth on the mesoscales: Idealised numerical simulations. Quart. J. Roy. Meteor. Soc., 144, 682694, https://doi.org/10.1002/qj.3236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravity waves and large-scale flows: An efficient description beyond the nonacceleration paradigm. J. Atmos. Sci., 73, 48334852, https://doi.org/10.1175/JAS-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2009: Forcing of mean vortical mode. Waves and Mean Flows, Cambridge University Press, 182–183.

    • Crossref
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 1999: On shear-generated gravity waves that reach the mesosphere. Part II: Wave propagation. J. Atmos. Sci., 56, 37643773, https://doi.org/10.1175/1520-0469(1999)056<3764:OSGGWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 2003: Remote recoil: A new wave–mean interaction effect. J. Fluid Mech., 492, 207230, https://doi.org/10.1017/S0022112003005639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, https://doi.org/10.1017/S0022112005004374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., M. E. McIntyre, and J. F. Scinocca, 1999: On shear-generated gravity waves that reach the mesosphere. Part I: Wave generation. J. Atmos. Sci., 56, 37493763, https://doi.org/10.1175/1520-0469(1999)056<3749:OSGGWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Callies, J., R. Ferrari, and O. Bühler, 2014: Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, https://doi.org/10.1073/pnas.1410772111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosser, H. V., and B. R. Sutherland, 2011: Anelastic internal wave packet evolution and stability. J. Atmos. Sci., 68, 28442859, https://doi.org/10.1175/JAS-D-11-097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, https://doi.org/10.1029/96JD02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, https://doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falgout, R. D., J. E. Jones, and U. M. Yang, 2006: The design and implementation of hypre, a library of parallel high performance preconditioners. Numerical Solution of Partial Differential Equations on Parallel Computers, Springer, 267–294.

    • Crossref
    • Export Citation
  • Fritts, D., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3A, 17601765, https://doi.org/10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. 1st ed. Academic Press, 662 pp.

  • Gong, J., D. L. Wu, and S. D. Eckermann, 2012: Gravity wave variances and propagation derived from AIRS radiances. Atmos. Chem. Phys., 12, 17011720, https://doi.org/10.5194/acp-12-1701-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffiths, M., and M. J. Reeder, 1996: Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. I: Model solutions. Quart. J. Roy. Meteor. Soc., 122, 11531174, https://doi.org/10.1002/qj.49712253307.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1975: Nonlinear internal gravity waves in a rotating fluid. J. Fluid Mech., 71, 497512, https://doi.org/10.1017/S0022112075002704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., C. Souprayen, and A. Hauchecorne, 2002: Eikonal simulations for the formation and the maintenance of atmospheric gravity wave spectra. J. Geophys. Res., 107, 4145, https://doi.org/10.1029/2001JD000815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke, and U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech., 838, 541, https://doi.org/10.1017/jfm.2017.883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, https://doi.org/10.1016/S1364-6826(96)00079-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, https://doi.org/10.1016/S1364-6826(96)00080-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., 1978: The stratosphere and mesosphere. Quart. J. Roy. Meteor. Soc., 104, 129, https://doi.org/10.1002/qj.49710443902.

  • Kemm, F., 2010: A comparative study of TVD-limiters—Well-known limiters and an introduction of new ones. Int. J. Numer. Methods Fluids, 67, 404440, https://doi.org/10.1002/fld.2357.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, R., 2009: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor. Comput. Fluid Dyn., 23, 161195, https://doi.org/10.1007/s00162-009-0104-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, https://doi.org/10.1175/2011JAS3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2004: Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61, 26922706, https://doi.org/10.1175/JAS3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and T. J. Dunkerton, 1998a: Inertia–gravity wave breaking in three dimensions. Part I: Convectively stable waves. J. Atmos. Sci., 55, 24732488, https://doi.org/10.1175/1520-0469(1998)055<2473:IGWBIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and T. J. Dunkerton, 1998b: Inertia–gravity wave breaking in three dimensions. Part II: Convectively unstable waves. J. Atmos. Sci., 55, 24892501, https://doi.org/10.1175/1520-0469(1998)055<2489:IGWBIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., J. H. Richter, Y. J. Orsolini, F. Stordal, and O. K. Kvissel, 2012: The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM. J. Atmos. Sol.-Terr. Phys., 78–79, 8498, https://doi.org/10.1016/j.jastp.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, https://doi.org/10.1002/jgrd.50705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated gravity wave drag. J. Geophys. Res., 100, 25 84125 853, https://doi.org/10.1029/95JD02533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2017: Mountain waves, downslope winds, and low-level blocking forced by a midlatitude cyclone encountering an isolated ridge. J. Atmos. Sci., 74, 617639, https://doi.org/10.1175/JAS-D-16-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraschko, J., M. D. Fruman, U. Achatz, S. Hickel, and Y. Toledo, 2015: On the application of Wentzel–Kramer–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quart. J. Roy. Meteor. Soc., 141, 676697, https://doi.org/10.1002/qj.2381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. 1st ed. Academic Press, 279 pp.

    • Crossref
    • Export Citation
  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 59055926, https://doi.org/10.1175/2010JCLI3490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., H. Teitelbaum, and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the fronts and Atlantic storm-track experiment radio soundings. J. Geophys. Res., 108, 4686, https://doi.org/10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Remmler, S., S. Hickel, M. D. Fruman, and U. Achatz, 2015: Validation of large-eddy simulation methods for gravity wave breaking. J. Atmos. Sci., 72, 35373562, https://doi.org/10.1175/JAS-D-14-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribstein, B., and U. Achatz, 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4-D ray-tracing gravity-wave parameterization. J. Geophys. Res. Space Phys., 121, 89368950, https://doi.org/10.1002/2016JA022478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribstein, B., U. Achatz, and F. Senf, 2015: The interaction between gravity waves and solar tides: Results from 4-D ray tracing coupled to a linear tidal model. J. Geophys. Res. Space Phys., 120, 67956817, https://doi.org/10.1002/2015JA021349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieper, F., U. Achatz, and R. Klein, 2013a: Range of validity of an extended WKB theory for atmospheric gravity waves: One-dimensional and two-dimensional case. J. Fluid Mech., 729, 330363, https://doi.org/10.1017/jfm.2013.307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieper, F., S. Hickel, and U. Achatz, 2013b: A conservative integration of the pseudo-incompressible equations with implicit turbulence parameterization. Mon. Wea. Rev., 141, 861886, https://doi.org/10.1175/MWR-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Let., 32, L18715, https://doi.org/10.1029/2005GL023226.

    • Crossref
    • Export Citation
  • Scaife, A. A., and et al. , 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 20892097, https://doi.org/10.1007/s00382-011-1080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2002: The effect of back-reflection in the parameterization of non-orographic gravity-wave drag. J. Meteor. Soc. Japan, 80, 939962, https://doi.org/10.2151/jmsj.80.939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364, https://doi.org/10.3402/tellusa.v32i4.10590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., W. C. Skamarock, and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943211, https://doi.org/10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 14191438, https://doi.org/10.1175/JAS-D-15-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabaei, A., and T. R. Akylas, 2007: Resonant long-short wave interactions in an unbounded rotating stratified fluid. Stud. Appl. Math., 119, 271296, https://doi.org/10.1111/j.1467-9590.2007.00389.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toro, E. F., 1999: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 2nd ed. Springer, 724 pp.

    • Crossref
    • Export Citation
  • van Leer, B., W.-T. Lee, and P. Roe, 1991: Characteristic time-stepping or local preconditioning of the Euler equations. 10th Computational Fluid Dynamics Conf., Honolulu, HI, American Institute of Aeronautics and Astronautics, 260–282, https://doi.org/10.2514/6.1991-1552.

    • Crossref
    • Export Citation
  • Wang, L., and M. A. Geller, 2003: Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J. Geophys. Res., 108, 4489, https://doi.org/10.1029/2002JD002786.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857, https://doi.org/10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, https://doi.org/10.1175/JAS-D-13-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2015: Tracking gravity waves in moist baroclinic jet-front systems. J. Adv. Model. Earth Syst., 7, 6791, https://doi.org/10.1002/2014MS000395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., F. Zhang, and J. H. Richter, 2016: An analysis of gravity wave spectral characteristics in moist baroclinic jet–front systems. J. Atmos. Sci., 73, 31333155, https://doi.org/10.1175/JAS-D-15-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, J., T. Akylas, G. Bölöni, J. Wei, B. Ribstein, R. Klein, and U. Achatz, 2018: Interactions between meso- and submesoscale gravity waves and their efficient representation in mesoscale-resolving models. J. Atmos. Sci., 75, 22572280, https://doi.org/10.1175/JAS-D-17-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, https://doi.org/10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., S. E. Koch, C. A. Davis, and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245, https://doi.org/10.1002/qj.49712757702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, https://doi.org/10.1175/JAS4028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Zhang, J. Wei, and S. Wang, 2013: Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations. Acta Meteor. Sin., 27, 446454, https://doi.org/10.1007/s13351-013-0301-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., J. Wei, M. Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy, 2015: Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment. Atmos. Chem. Phys., 15, 76677684, https://doi.org/10.5194/acp-15-7667-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 7
PDF Downloads 48 48 8

Efficient Modeling of the Interaction of Mesoscale Gravity Waves with Unbalanced Large-Scale Flows: Pseudomomentum-Flux Convergence versus Direct Approach

View More View Less
  • 1 Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany, and School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China
  • | 2 Institut für Atmosphäre und Umwelt, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
© Get Permissions
Restricted access

Abstract

This paper compares two different approaches for the efficient modeling of subgrid-scale inertia–gravity waves in a rotating compressible atmosphere. The first approach, denoted as the pseudomomentum scheme, exploits the fact that in a Lagrangian-mean reference frame the response of a large-scale flow can only be due to forcing momentum. Present-day gravity wave parameterizations follow this route. They do so, however, in an Eulerian-mean formulation. Transformation to that reference frame leads, under certain assumptions, to pseudomomentum-flux convergence by which the momentum is to be forced. It can be shown that this approach is justified if the large-scale flow is in geostrophic and hydrostatic balance. Otherwise, elastic and thermal effects might be lost. In the second approach, called the direct scheme and not relying on such assumptions, the large-scale flow is forced both in the momentum equation, by anelastic momentum-flux convergence and an additional elastic term, and in the entropy equation, via entropy-flux convergence. A budget analysis based on one-dimensional wave packets suggests that the comparison between the abovementioned two schemes should be sensitive to the following two parameters: 1) the intrinsic frequency and 2) the wave packet scale. The smaller the intrinsic frequency is, the greater their differences are. More importantly, with high-resolution wave-resolving simulations as a reference, this study shows conclusive evidence that the direct scheme is more reliable than the pseudomomentum scheme, regardless of whether one-dimensional or two-dimensional wave packets are considered. In addition, sensitivity experiments are performed to further investigate the relative importance of each term in the direct scheme, as well as the wave–mean flow interactions during the wave propagation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ulrich Achatz, achatz@iau.uni-frankfurt.de; Junhong Wei, weijunh@mail.sysu.edu.cn

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Abstract

This paper compares two different approaches for the efficient modeling of subgrid-scale inertia–gravity waves in a rotating compressible atmosphere. The first approach, denoted as the pseudomomentum scheme, exploits the fact that in a Lagrangian-mean reference frame the response of a large-scale flow can only be due to forcing momentum. Present-day gravity wave parameterizations follow this route. They do so, however, in an Eulerian-mean formulation. Transformation to that reference frame leads, under certain assumptions, to pseudomomentum-flux convergence by which the momentum is to be forced. It can be shown that this approach is justified if the large-scale flow is in geostrophic and hydrostatic balance. Otherwise, elastic and thermal effects might be lost. In the second approach, called the direct scheme and not relying on such assumptions, the large-scale flow is forced both in the momentum equation, by anelastic momentum-flux convergence and an additional elastic term, and in the entropy equation, via entropy-flux convergence. A budget analysis based on one-dimensional wave packets suggests that the comparison between the abovementioned two schemes should be sensitive to the following two parameters: 1) the intrinsic frequency and 2) the wave packet scale. The smaller the intrinsic frequency is, the greater their differences are. More importantly, with high-resolution wave-resolving simulations as a reference, this study shows conclusive evidence that the direct scheme is more reliable than the pseudomomentum scheme, regardless of whether one-dimensional or two-dimensional wave packets are considered. In addition, sensitivity experiments are performed to further investigate the relative importance of each term in the direct scheme, as well as the wave–mean flow interactions during the wave propagation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ulrich Achatz, achatz@iau.uni-frankfurt.de; Junhong Wei, weijunh@mail.sysu.edu.cn

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

Save