• Anber, U., S. Wang, and A. Sobel, 2014: Response of atmospheric convection to vertical wind shear: Cloud-system-resolving simulations with parameterized large-scale circulation. Part I: Specified radiative cooling. J. Atmos. Sci., 71, 29762993, https://doi.org/10.1175/JAS-D-13-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anber, U., P. Gentine, S. Wang, and A. H. Sobel, 2015a: Fog and rain in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 11 47311 477, https://doi.org/10.1073/pnas.1505077112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anber, U., S. Wang, and A. Sobel, 2015b: Effect of surface fluxes versus radiative heating on tropical deep convection. J. Atmos. Sci., 72, 33783388, https://doi.org/10.1175/JAS-D-14-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anber, U., S. Wang, and A. Sobel, 2016: Response of atmospheric convection to vertical wind shear: Cloud-system-resolving simulations with parameterized large-scale circulation. Part II: Effect of interactive radiation. J. Atmos. Sci., 73, 199209, https://doi.org/10.1175/JAS-D-15-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., S. J. Woolnough, and R. S. Plant, 2012: Cloud-resolving model simulations with one- and two-way couplings via the weak temperature gradient approximation. J. Atmos. Sci., 69, 36833699, https://doi.org/10.1175/JAS-D-12-058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daleu, C. L., R. S. Plant, and S. J. Woolnough, 2017: Using the weak temperature gradient approximation to evaluate parameterizations: An example of the transition from suppressed to active convection. J. Adv. Model. Earth Syst., 9, 23502367, https://doi.org/10.1002/2017MS000940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2007: Quasi-equilibrium dynamics of the tropical atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 186–218.

  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impact on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and et al. , 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, https://doi.org/10.1029/2011JD016595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19, 46644682, https://doi.org/10.1175/JCLI3857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2011: Impact of atmospheric aerosols in simulations of convective–radiative quasi equilibrium: Double-moment microphysics. J. Climate, 24, 18971912, https://doi.org/10.1175/2010JCLI3647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and D. Jarecka, 2015: Modeling condensation in shallow nonprecipitating convection. J. Atmos. Sci., 72, 46614679, https://doi.org/10.1175/JAS-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., 73, 37493770, https://doi.org/10.1175/JAS-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2017: Modeling condensation in deep convection. J. Atmos. Sci., 74, 22472267, https://doi.org/10.1175/JAS-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. Moncrieff, and W. Hall, 1998: Cloud resolving modeling of cloud systems during phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282, https://doi.org/10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, M. J., and D. J. Raymond, 2014: WTG cloud modeling with spectral decomposition of heating. J. Adv. Model. Earth Syst., 6, 11211140, https://doi.org/10.1002/2014MS000359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., IPCC, 151 pp.

  • Khain, A. P., and et al. , 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and C.-E. Yang, 2013: Cloud-resolving modelling of aerosol indirect effects in idealised radiative-convective equilibrium with interactive and fixed sea surface temperature. Atmos. Chem. Phys., 13, 41334144, https://doi.org/10.5194/acp-13-4133-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113, D16202, https://doi.org/10.1029/2007JD009224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 50310 523, https://doi.org/10.5194/acp-11-10503-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2013: Response of tropical deep convection to localized heating perturbations: Implications for aerosol-induced convective invigoration. J. Atmos. Sci., 70, 35333555, https://doi.org/10.1175/JAS-D-13-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics scheme for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and S. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923, https://doi.org/10.1175/JAS3705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193, https://doi.org/10.1175/2010JCLI3690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860, https://doi.org/10.1175/1520-0469(2002)059<0837:FDFISS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2005: Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320, https://doi.org/10.1256/qj.03.97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, https://doi.org/10.1029/2006GL028607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and Ž. Fuchs, 2007: A theory for the spinup of tropical depressions. Quart. J. Roy. Meteor. Soc., 133, 17431754, https://doi.org/10.1002/qj.125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, (3), https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some influences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275, https://doi.org/10.1175/1520-0469(1996)053<3265:MCSSIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2012: Numerical tests of the weak pressure gradient approximation. J. Atmos. Sci., 69, 28462856, https://doi.org/10.1175/JAS-D-11-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6788, https://doi.org/10.1007/s00703-005-0113-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. D. Beheng, 2012: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys., 12, 709725, https://doi.org/10.5194/acp-12-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751 STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged tropical precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 219–251.

  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, https://doi.org/10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, https://doi.org/10.1175/2010JAS3603.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative SST: Cloud-resolving simulations in 2D and 3D. J. Geophys. Res., 116, D11119, https://doi.org/10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2012: Impact of imposed drying on deep convection in a cloud-resolving model. J. Geophys. Res., 117, D02112, https://doi.org/10.1029/2011JD016847.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and J. Nie, 2016: Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. J. Adv. Model. Earth Syst., 8, 121139, https://doi.org/10.1002/2015MS000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63, 16051622, https://doi.org/10.1175/JAS3706.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 6
PDF Downloads 59 59 6

Probing the Response of Tropical Deep Convection to Aerosol Perturbations Using Idealized Cloud-Resolving Simulations with Parameterized Large-Scale Dynamics

View More View Less
  • 1 Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
  • | 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 3 Department of Earth and Environmental Engineering, Columbia University, New York, New York
  • | 4 Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
© Get Permissions
Restricted access

Abstract

A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Usama Anber, uanber@bnl.gov

Abstract

A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Usama Anber, uanber@bnl.gov
Save