• Arola, A., and T. Koskela, 2004: On the sources of bias in aerosol optical depth retrieval in the UV range. J. Geophys. Res., 109, D08209, https://doi.org/10.1029/2003JD004375.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1992: Solar radiative transfer through clouds possessing isotropic variable extinction coefficient. Quart. J. Roy. Meteor. Soc., 118, 11451162, https://doi.org/10.1002/qj.49711850807.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996: Estimating cloud field albedo using one-dimensional series of optical depth. J. Atmos. Sci., 53, 28262837, https://doi.org/10.1175/1520-0469(1996)053<2826:ECFAUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, A. R. Bansemer, B. H. Cole, A. Merrelli, C. G. Schmitt, and C. Wang, 2014: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiat. Transfer, 146, 123139, https://doi.org/10.1016/j.jqsrt.2014.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanc, B., and et al. , 2014: Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy, 110, 561577, https://doi.org/10.1016/j.solener.2014.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böhm-Vitense, E., 1989: Stellar Atmospheres. Vol. 2, Introduction to Stellar Astrophysics, Cambridge University Press, 260 pp.

    • Crossref
    • Export Citation
  • Cole, B. H., P. Yang, B. A. Baum, J. Riedi, and L.-C. Labonnete, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 37393750, https://doi.org/10.5194/acp-14-3739-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusack, S., A. Slingo, J. M. Edwards, and M. Wild, 1998: The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Quart. J. Roy. Meteor. Soc., 124, 25172526, https://doi.org/10.1002/qj.49712455117.

    • Search Google Scholar
    • Export Citation
  • de Rooij, W. A., and C. C. A. H. van der Stap, 1984: Expansion of Mie scattering matrices in generalized spherical functions. Astron. Astrophys., 131, 237248.

    • Search Google Scholar
    • Export Citation
  • DeVore, J. G., A. T. J. Stair, A. J. LePage, and D. Villanucci, 2012: Using scattering calculations to compare MODIS retrievals of thin cirrus optical properties with SAM solar disk and aureole radiance measurements. J. Geophys. Res., 117, D01204, https://doi.org/10.1029/2011JD015858.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freidenreich, S. M., and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31 38931 409, https://doi.org/10.1029/1999JD900456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J. M., J. Su, Q. Fu, T. P. Ackerman, and J. P. Huang, 2011: Dust aerosol forward scattering effects on ground-based aerosol optical depth retrievals. J. Quant. Spectrosc. Radiat. Transfer, 112, 310319, https://doi.org/10.1016/j.jqsrt.2010.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., 2001: Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy, 71, 325346, https://doi.org/10.1016/S0038-092X(01)00054-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haapanala, P., P. Räisänen, G. M. McFarquhar, J. Tiira, A. Macke, M. Kahnert, J. DeVore, and T. Nousiainen, 2017: Disk and circumsolar radiances in the presence of ice clouds. Atmos. Chem. Phys., 17, 68656882, https://doi.org/10.5194/acp-17-6865-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hale, G. M., and M. R. Querry, 1973: Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt., 12, 555563, https://doi.org/10.1364/AO.12.000555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2006: Fast approximate calculation of multiply scattered lidar returns. Appl. Opt., 45, 59845992, https://doi.org/10.1364/AO.45.005984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 24522459, https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnikova, O. V., and I. N. Sokolik, 2002: Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths. Geophys. Res. Lett., 29, 1398, https://doi.org/10.1029/2002GL014947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and et al. , 1997: Cirrus cloud radiative and microphysical properties from ground observations and in situ measurements during FIRE 1991 and their application to exhibit problems in cirrus solar radiative transfer modeling. J. Atmos. Sci., 54, 23202344, https://doi.org/10.1175/1520-0469(1997)054<2320:CCRAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Müller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 28132825, https://doi.org/10.1175/1520-0469(1996)053<2813:SSPOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauno, P., G. M. McFarquhar, P. Räisänen, M. Kahnert, M. S. Timlin, and T. Nousiainen, 2011: The influence of observed cirrus microphysical properties on shortwave radiation: A case study over Oklahoma. J. Geophys. Res., 116, D22208, https://doi.org/10.1029/2011JD016058.

    • Search Google Scholar
    • Export Citation
  • Mayer, B., 2009: Radiative transfer in the cloudy atmosphere. Eur. Phys. J. Conf., 1, 7599, https://doi.org/10.1140/epjconf/e2009-00912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, 1999: Bidirectional reflectance of flat, optically thick particulate layers: An efficient radiative transfer solution and applications to snow and soil surfaces. J. Quant. Spectrosc. Radiat. Transfer, 63, 409432, https://doi.org/10.1016/S0022-4073(99)00028-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, P., 2002: Two-stream approximations revisited: A new improvement and tests with GCM data. Quart. J. Roy. Meteor. Soc., 128, 23972416, https://doi.org/10.1256/qj.01.161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, P., G. A. Isaac, H. W. Barker, and I. Gultepe, 2003: Solar radiative transfer for stratiform clouds with horizontal variations in liquid-water path and droplet effective radius. Quart. J. Roy. Meteor. Soc., 129, 21352149, https://doi.org/10.1256/qj.02.149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinhardt, B., 2013: On the retrieval of circumsolar radiation from satellite observations and weather model output. Ph.D. thesis, Ludwig-Maximilians-Universität München, 137 pp.

  • Reinhardt, B., R. Buras, L. Bugliaro, S. Wilbert, and B. Mayer, 2014: Determination of circumsolar radiation from Meteosat Second Generation. Atmos. Meas. Tech., 7, 823838, https://doi.org/10.5194/amt-7-823-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, P. B., and et al. , 2004: Sunlight transmission through desert dust and marine aerosols: Diffuse light corrections to sun photometry and pyrheliometry. J. Geophys. Res., 109, D08207, https://doi.org/10.1029/2003JD004292.

    • Search Google Scholar
    • Export Citation
  • Segal-Rosenheimer, M., P. B. Russell, J. M. Livingston, S. Ramachandran, J. Redemann, and B. A. Baum, 2013: Retrieval of cirrus properties by sun photometry: A new perspective on an old issue. J. Geophys. Res. Atmos., 118, 45034520, https://doi.org/10.1002/jgrd.50185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiobara, M., and S. Asano, 1994: Estimation of cirrus optical thickness from sun photometer measurements. J. Appl. Meteor., 33, 672681, https://doi.org/10.1175/1520-0450(1994)033<0672:EOCOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinyuk, A., B. N. Holben, A. Smirnov, T. F. Eck, I. Slutsker, J. S. Schafer, D. M. Giles, and M. Sorokin, 2012: Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering. Geophys. Res. Lett., 39, L23806, https://doi.org/10.1029/2012GL053894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., 2011: Improving transmission calculations for the Edwards–Slingo radiation scheme using a correlated-k distribution method. Quart. J. Roy. Meteor. Soc., 137, 21382148, https://doi.org/10.1002/qj.880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., J. Li, Y. He, J. Li, A. Liu, and F. Zhang, 2016: Determination of direct normal irradiance including circumsolar radiation in climate/NWP models. Quart. J. Roy. Meteor. Soc., 142, 25912598, https://doi.org/10.1002/qj.2848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 16491662, https://doi.org/10.5194/acp-14-1649-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover Publications, 470 pp.

  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zdunkowski, W. G., R. M. Welch, and G. Korb, 1980: An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds. Contrib. Atmos. Phys., 53, 147166.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 145 34
PDF Downloads 88 88 30

On the Computation of Apparent Direct Solar Radiation

View More View Less
  • 1 Finnish Meteorological Institute, Helsinki, Finland
© Get Permissions
Restricted access

Abstract

Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0030.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Petri Räisänen, petri.raisanen@fmi.fi

Abstract

Near-forward-scattered radiation coming from the vicinity of the sun’s direction impacts the interpretation of measurements of direct solar radiation by pyrheliometers and sun photometers, and it is also relevant for concentrating solar technology applications. Here, a Monte Carlo radiative transfer model is employed to study the apparent direct solar transmittance t(α), that is, the transmittance measured by an instrument that receives the radiation within a half-field-of-view (half-FOV) angle α from the center of the solar disk, for various ice cloud, water cloud, and aerosol cases. The contribution of scattered radiation to t(α) increases with increasing particle size, and it also depends strongly on ice crystal morphology. The Monte Carlo calculations are compared with a simple approach, in which t(α) is estimated through Beer’s law, using a scaled optical depth that excludes the part of the phase function corresponding to scattering angles smaller than α. Overall, this optical depth scaling approach works very well, although with some degradation of the performance for ice clouds for very small half-FOV angles (α < 0.5°–1°), and in optically thick cases. The errors can be reduced by fine-tuning the optical depth scaling factors based on the Monte Carlo results. Parameterizations are provided for computing the optical depth scaling factors for water clouds, ice clouds, aerosols, and for completeness, Rayleigh scattering to allow for a simple calculation of t(α). It is also shown that the optical depth scaling used in delta-two-stream approximations is inappropriate for simulating the direct solar radiation received by pyrheliometers.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0030.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Petri Räisänen, petri.raisanen@fmi.fi

Supplementary Materials

    • Supplemental Materials (ZIP 362.74 KB)
Save