• Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, and S. T. Bedka, 2005: Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911, https://doi.org/10.1175/JAM2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 1735, https://doi.org/10.1016/j.jqsrt.2014.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., and P. Yang, 2017: Improved ice particle optical property simulations in the ultraviolet to far-infrared regime. J. Quant. Spectrosc. Radiat. Transfer, 189, 228237, https://doi.org/10.1016/j.jqsrt.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, and G. W. Kattawar, 2010: Edge-effect contribution to the extinction of light by dielectric disk and cylindrical particles. Appl. Opt., 49, 46414646, https://doi.org/10.1364/AO.49.004641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 14921508, https://doi.org/10.1016/j.jqsrt.2011.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169183, https://doi.org/10.1016/j.jqsrt.2012.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borovoi, A., A. Konoshonkin, N. Kustova, and H. Okamoto, 2012: Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals. Opt. Express, 20, 28 22228 233, https://doi.org/10.1364/OE.20.028222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borovoi, A., A. Konoshonkin, and N. Kustova, 2014: The physical-optics approximation and its application to light backscattering by hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 146, 181189, https://doi.org/10.1016/j.jqsrt.2014.04.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréon, F.-M., and B. Dubrulle, 2004: Horizontally oriented plates in clouds. J. Atmos. Sci., 61, 28882898, https://doi.org/10.1175/JAS-3309.1.

  • Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: Theory. Appl. Opt., 21, 35693580, https://doi.org/10.1364/AO.21.003569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., G. Brogniez, P. Goloub, M. B. Francois, and P. H. Flamant, 1999: Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1. J. Quant. Spectrosc. Radiat. Transfer, 63, 521543, https://doi.org/10.1016/S0022-4073(99)00036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, J., L. Bi, P. Yang, G. L. Kattawar, F. Weng, Q. Liu, and T. Greenwald, 2017: Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing. J. Quant. Spectrosc. Radiat. Transfer, 190, 2637, https://doi.org/10.1016/j.jqsrt.2016.11.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, L., M. Seefeldner, M. Wiegner, and B. Mayer, 2017: Ice crystal characterization in cirrus clouds: A sun-tracking camera system and automated detection algorithm for halo displays. Atmos. Meas. Tech., 10, 24992516, https://doi.org/10.5194/amt-10-2499-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fröhlich, C., and G. E. Shaw, 1980: New determination of Rayleigh scattering in the terrestrial atmosphere. Appl. Opt., 19, 17731775, https://doi.org/10.1364/AO.19.001773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenler, R. G., 1980: Rainbows, Halos, and Glories. Cambridge University Press, 240 pp.

  • Greenler, R. G., and A. J. Mallmann, 1972: Circumscribed halos. Science, 176, 128131, https://doi.org/10.1126/science.176.4031.128.

  • Hashino, T., M. Chiruta, D. Polzin, A. Kubicek, and P. K. Wang, 2014: Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque. Atmos. Res., 150, 7996, https://doi.org/10.1016/j.atmosres.2014.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashino, T., K.-Y. Cheng, C.-C. Chueh, and P. K. Wang, 2016: Numerical study of motion and stability of falling columnar crystals. J. Atmos. Sci., 73, 19231942, https://doi.org/10.1175/JAS-D-15-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., D. Winker, P. Yang, B. A. Baum, L. Poole, and L. Vann, 2001: Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study. J. Quant. Spectrosc. Radiat. Transfer, 70, 569579, https://doi.org/10.1016/S0022-4073(01)00030-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and et al. , 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and et al. , 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwabuchi, H., 2006: Efficient Monte Carlo methods for radiative transfer modeling. J. Atmos. Sci., 63, 23242339, https://doi.org/10.1175/JAS3755.1.

  • Iwabuchi, H., P. Yang, K. Liou, and P. Minnis, 2012: Physical and optical properties of persistent contrails: Climatology and interpretation. J. Geophys. Res., 117, D06215, https://doi.org/10.1029/2011JD017020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. R., 1988: Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt., 27, 48614873, https://doi.org/10.1364/AO.27.004861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., and et al. , 2016: The microwave radiative properties of falling snow derived from nonspherical ice particle models. Part I: An extensive database of simulated pristine crystals and aggregate particles, and their scattering properties. J. Appl. Meteor. Climatol., 55, 691708, https://doi.org/10.1175/JAMC-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. Baker, B. Pilson, and Q. Mo, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 31863203, https://doi.org/10.1175/JAS3803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., and P. Yang, 2016: Light Scattering by Ice Crystals: Fundamentals and Applications. 1st ed. Cambridge University Press, 443 pp.

    • Crossref
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, https://doi.org/10.1175/2008BAMS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and E. Roeckner, 1995: Influence of cirrus cloud radiative forcing on climate and climate sensitivity in a general circulation model. J. Geophys. Res., 100, 16 30516 323, https://doi.org/10.1029/95JD01383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., and W. Livingston, 2001: Color and Light in Nature. 2nd ed. Cambridge University Press, 277 pp.

  • Marshak, A., T. Vaìrnai, and A. Kostinski, 2017: Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point. Geophys. Res. Lett., 44, 51975202, https://doi.org/10.1002/2017GL073248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Extinction and polarization of transmitted light by partially aligned nonspherical grains. Astrophys. J., 367, 561574, https://doi.org/10.1086/169652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and L. D. Travis, 1994: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun., 109, 1621, https://doi.org/10.1016/0030-4018(94)90731-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, V., and K. Sassen, 2005: Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations. J. Appl. Meteor., 44, 653664, https://doi.org/10.1175/JAM2223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noel, V., H. Chepfer, G. Ledanois, and P. H. Flamant, 2001: Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space. Appl. Opt., 40, 43654375, https://doi.org/10.1364/AO.40.004365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okamoto, H., K. Sato, and Y. Hagihira, 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. J. Geophys. Res., 115, D22209, https://doi.org/10.1029/2009JD013383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattloch, F., and E. Tränkle, 1984: Monte Carlo simulation and analysis of halo phenomena. J. Opt. Soc. Amer., 1A, 520526, https://doi.org/10.1364/JOSAA.1.000520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Rieìdi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J., 186, 705714, https://doi.org/10.1086/152538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, M., H. Iwabuchi, P. Yang, G. Tang, M. D. King, and M. Sekiguchi, 2017: Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP–IIR measurements. J. Geophys. Res. Atmos., 122, 44404462, https://doi.org/10.1002/2016JD026080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. M. Comstock, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58, 21132127, https://doi.org/10.1175/1520-0469(2001)058<2113:AMCCCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. Zhu, and S. Benson, 2003: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: IV. Optical displays. Appl. Opt., 42, 332341, https://doi.org/10.1364/AO.42.000332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., P. Yang, G. W. Kattawar, and X. Zhang, 2017: Physical-geometric optics method for large size faceted particles. Opt. Express, 25, 24 04424 060, https://doi.org/10.1364/OE.25.024044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci., 46, 2036, https://doi.org/10.1175/1520-0469(1989)046<0020:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takano, Y., and K. N. Liou, 1993: Transfer of polarized infrared radiation in optically anisotropic media: Application to horizontally oriented crystals. J. Opt. Soc. Amer., 10A, 12431256, https://doi.org/10.1364/JOSAA.10.001243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and Y. Liu, 1997: Polarized radiance distribution measurements of skylight. I. System description and characterization. Appl. Opt., 36, 60836094, https://doi.org/10.1364/AO.36.006083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and et al. , 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, https://doi.org/10.1029/2008JD010015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, https://doi.org/10.1029/2007JD009744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, P., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805812, https://doi.org/10.1109/PROC.1965.4058.

  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1996: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 65686584, https://doi.org/10.1364/AO.35.006568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: Solutions by a ray-by-ray integration algorithm. J. Opt. Soc. Amer., 14, 22782289, https://doi.org/10.1364/JOSAA.14.002278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, B. A. Baum, M. I. Mishchenko, and J. Reichardt, 2003: Enhanced lidar backscattering by horizontally oriented ice plates. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 11391157, https://doi.org/10.1016/S0022-4073(02)00346-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K. N. Liou, G. L. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., K.-N. Liou, L. Bi, C. Liu, B. Yi, and B. A. Baum, 2015: On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci., 32, 3263, https://doi.org/10.1007/s00376-014-0011-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., S. Hioki, M. Saito, C.-P. Kuo, B. A. Baum, and K.-N. Liou, 2018: A review of ice cloud optical property models for passive satellite remote sensing. Atmosphere, 9, 499, https://doi.org/10.3390/atmos9120499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., J. Ding, R. L. Panetta, K.-N. Liou, G. W. Kattawar, and M. I. Mishchenko, 2019: On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles. Prog. Electromagn. Res., 164, 2761, https://doi.org/10.2528/PIER18112810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yee, S. K., 1966: Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antennas Propag., 14, 302307, https://doi.org/10.1109/TAP.1966.1138693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115, D00H32, https://doi.org/10.1029/2009JD012334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., V. P. Maltsev, and A. G. Hoekstra, 2007: The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength. J. Quant. Spectrosc. Radiat. Trans., 106, 546557, https://doi.org/10.1016/j.jqsrt.2007.01.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., P. Yang, A. E. Dessler, Y. Hu, and B. A. Baum, 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climatol., 51, 14261439, https://doi.org/10.1175/JAMC-D-11-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 28
PDF Downloads 85 85 19

Oriented Ice Crystals: A Single-Scattering Property Database for Applications to Lidar and Optical Phenomenon Simulations

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

A database (TAMUoic2019) of the scattering, absorption, and polarization properties of horizontally oriented hexagonal plates (HOPs) and horizontally oriented hexagonal columns (HOCs) at three wavelengths (355, 532, and 1064 nm) is developed for applications to radiative transfer simulations and remote sensing implementations involving oriented ice crystals. The maximum dimension of oriented ice crystals ranges from 50 to 10 000 μm in 165 discrete size bins. The database accounts for 94 incident directions. The single-scattering properties of oriented ice crystals are computed with the physical-geometric optics method (PGOM), which is consistent with the invariant-imbedding T-matrix method for particles with size parameters larger than approximately 100–150. Note that the accuracy of PGOM increases as the size parameter increases. PGOM computes the two-dimensional phase matrix as a function of scattering polar and azimuth angles, and the phase matrix significantly varies with the incident direction. To derive the bulk optical properties of ice clouds for practical radiative transfer applications, the optical properties of individual HOPs and HOCs are averaged over the probability distribution of the tilting angle of oriented ice crystals based on the use of the TAMUoic2019 database. Simulations of lidar signals associated with ice clouds based on the bulk optical properties indicate the importance of the fraction of oriented ice crystals and the probability distribution of the tilting angle. Simulations of optical phenomena caused by oriented ice crystals demonstrate that the computed single-scattering properties of oriented ice crystals are physically rational.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masanori Saito, masa.saito@tamu.edu

Abstract

A database (TAMUoic2019) of the scattering, absorption, and polarization properties of horizontally oriented hexagonal plates (HOPs) and horizontally oriented hexagonal columns (HOCs) at three wavelengths (355, 532, and 1064 nm) is developed for applications to radiative transfer simulations and remote sensing implementations involving oriented ice crystals. The maximum dimension of oriented ice crystals ranges from 50 to 10 000 μm in 165 discrete size bins. The database accounts for 94 incident directions. The single-scattering properties of oriented ice crystals are computed with the physical-geometric optics method (PGOM), which is consistent with the invariant-imbedding T-matrix method for particles with size parameters larger than approximately 100–150. Note that the accuracy of PGOM increases as the size parameter increases. PGOM computes the two-dimensional phase matrix as a function of scattering polar and azimuth angles, and the phase matrix significantly varies with the incident direction. To derive the bulk optical properties of ice clouds for practical radiative transfer applications, the optical properties of individual HOPs and HOCs are averaged over the probability distribution of the tilting angle of oriented ice crystals based on the use of the TAMUoic2019 database. Simulations of lidar signals associated with ice clouds based on the bulk optical properties indicate the importance of the fraction of oriented ice crystals and the probability distribution of the tilting angle. Simulations of optical phenomena caused by oriented ice crystals demonstrate that the computed single-scattering properties of oriented ice crystals are physically rational.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Masanori Saito, masa.saito@tamu.edu
Save