• Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91A, 115, https://doi.org/10.2151/jmsj.2013-A01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and et al. , 2013: The Aqua-Planet Experiment (APE): Control SST simulation. J. Meteor. Soc. Japan, 91A, 1756, https://doi.org/10.2151/jmsj.2013-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanco, J. E., 2018: Modulation of cloud cluster propagation by super cloud clusters. Ph.D. thesis, University of Miami, 221 pp.

  • Blanco, J. E., D. S. Nolan, and S. Tulich, 2016a: Convectively coupled Kelvin waves in aquachannel simulations. Part I: Propagation speeds, composite structures and comparison with aquaplanets. J. Geophys. Res. Atmos., 121, 11 28711 318, https://doi.org/10.1002/2016JD025004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanco, J. E., D. S. Nolan, and B. E. Mapes, 2016b: Convectively coupled Kelvin waves in aquachannel simulations. Part II: Life cycle and dynamical-convective coupling. J. Geophys. Res. Atmos., 121, 11 31911 347, https://doi.org/10.1002/2016JD025022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and S.-J. Lin, 1994: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. J. Atmos. Sci., 51, 12821297, https://doi.org/10.1175/1520-0469(1994)051<1282:TIOSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, https://doi.org/10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., S. N. Tulich, and G. N. Kiladis, 2012: An object-based approach to assessing the organization of tropical convection. J. Atmos. Sci., 69, 24882504, https://doi.org/10.1175/JAS-D-11-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: Convectively coupled Kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64, 20762090, https://doi.org/10.1175/JAS3945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468, https://doi.org/10.1002/qj.49712757211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, D., 2008: On Gerstner’s water wave. J. Nonlinear Math. Phys., 15 (Suppl.), 8795, https://doi.org/10.2991/jnmp.2008.15.S2.7.

  • Kao, S.-K., and M. Neiburger, 1959: Oscillations and trajectories of air particles in some pressure systems. J. Geophys. Res., 64, 12831291, https://doi.org/10.1029/JZ064i009p01283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, https://doi.org/10.1175/2011JAS3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., P. Li, C. H. Sui, and T. Nakazawa, 1989: Dynamics of super cloud clusters, westerly wind bursts, 30-60 day oscillations and ENSO: An unified view. J. Meteor. Soc. Japan, 67, 205219, https://doi.org/10.2151/jmsj1965.67.2_205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., T. Nakazawa, and C.-H. Sui, 1991: Observations of cloud cluster hierarchies over the tropical western Pacific. J. Geophys. Res., 96, 31973208, https://doi.org/10.1029/90JD01830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci., 61, 22182227, https://doi.org/10.1175/1520-0469(2004)061<2218:EOCGGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D. W., and O. Karst, 1969: A census of cloud systems over the tropical Pacific. Studies in atmospheric energetics based on aerospace probings, University of Wisconsin–Madison Space Science and Engineering Center Rep., 37–50.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839, https://doi.org/10.2151/jmsj1965.66.6_823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Tomita, S. Iga, H. Miura, and M. Satoh, 2007: Multiscale organization of convection simulated with explicit cloud processes on an aquaplanet. J. Atmos. Sci., 64, 19021921, https://doi.org/10.1175/JAS3948.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Tomita, S. Iga, H. Miura, and M. Satoh, 2008: Convectively coupled equatorial waves simulated on an aquaplanet in a global nonhydrostatic experiment. J. Atmos. Sci., 65, 12461265, https://doi.org/10.1175/2007JAS2395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., S. N. Tulich, and J. E. Blanco, 2016: ITCZ structure as determined by parameterized versus explicit convection in aquachannel and aquapatch simulations. J. Adv. Model. Earth Syst., 8, 425452, https://doi.org/10.1002/2015MS000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Numaguti, A., and Y. Hayashi, 2000: Gravity-wave dynamics of the hierarchical structure of super cloud clusters. J. Meteor. Soc. Japan, 78, 301331, https://doi.org/10.2151/jmsj1965.78.4_301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77, 907927, https://doi.org/10.2151/jmsj1965.77.4_907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, L., C.-H. Sui, K.-M. Lau, and W.-K. Tao, 2001: Genesis and evolution of hierarchical cloud clusters in a two-dimensional cumulus-resolving model. J. Atmos. Sci., 58, 877895, https://doi.org/10.1175/1520-0469(2001)058<0877:GAEOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66, 25792599, https://doi.org/10.1175/2009JAS2976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72, 451465, https://doi.org/10.2151/jmsj1965.72.3_451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155, https://doi.org/10.1175/2007JAS2353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and G. N. Kiladis, 2012: Squall lines and convectively coupled gravity waves in the tropics: Why do most cloud systems propagate westward? J. Atmos. Sci., 69, 29953012, https://doi.org/10.1175/JAS-D-11-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. A. Randall, and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 12101229, https://doi.org/10.1175/JAS3884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of cloud and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25, 261276, https://doi.org/10.1175/1520-0450(1986)025<0261:CCPDUL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M., and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, https://doi.org/10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and et al. , 2012: The APE atlas. NCAR Tech. Note NCAR/TN-484+STR, 508 pp., http://www.met.reading.ac.uk/~mike/APE/atlas.html.

  • Yamasaki, M., 2011: Toward an understanding of the Madden-Julian oscillation: With a mesoscale-convection-resolving model of 0.2 degree grid. Adv. Meteor., 2011, 296914, https://doi.org/10.1155/2011/296914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and N. Nishi, 1989: The hierarchy and self-affinity of the time variability within the tropical atmosphere inferred from the NOAA OLR data. J. Meteor. Soc. Japan, 67, 771788, https://doi.org/10.2151/jmsj1965.67.5_771.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 9
PDF Downloads 33 33 12

Nonlinear Zonal Propagation of Organized Convection in the Tropics

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

A wide range of the observed variability in the ITCZ is frequently explained in terms of equatorially trapped modes arising from Matsuno’s linear shallow-water model. Here, a series of zonally constant, meridionally symmetric aquachannel WRF simulations are used to study the propagation of tropical cloud clusters (CCs; patches of deep cloudiness and precipitation) in association with eastward-moving super cloud clusters (SCCs), also called convectively coupled Kelvin waves (CCKWs). Two independent but complementary methods are used: the first, from a local approach, involves a CC-tracking algorithm, while the second uses Lagrangian trajectories in a nonlocal framework. We show that the large-scale flow in low to midlevels advects the CCs either eastward or westward depending on model climatology, proximity to the CCKW axis, and latitude. Moreover, for most analyzed cases, sequences of CCs oscillate, describing qualitatively sinusoidal-like paths in longitude–time space, although with sharp transitions from westward to eastward motion due to westerly wind burst activity associated with the CCKWs. We also find that the discrete precipitation elements (CCs) are embedded in continuous tracks of positive moisture anomalies, which are parallel to the Lagrangian trajectories themselves. A conceptual model of the nonlinear SCC–CC interaction is presented.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joaquin E. Blanco, jblanco@rsmas.miami.edu

Abstract

A wide range of the observed variability in the ITCZ is frequently explained in terms of equatorially trapped modes arising from Matsuno’s linear shallow-water model. Here, a series of zonally constant, meridionally symmetric aquachannel WRF simulations are used to study the propagation of tropical cloud clusters (CCs; patches of deep cloudiness and precipitation) in association with eastward-moving super cloud clusters (SCCs), also called convectively coupled Kelvin waves (CCKWs). Two independent but complementary methods are used: the first, from a local approach, involves a CC-tracking algorithm, while the second uses Lagrangian trajectories in a nonlocal framework. We show that the large-scale flow in low to midlevels advects the CCs either eastward or westward depending on model climatology, proximity to the CCKW axis, and latitude. Moreover, for most analyzed cases, sequences of CCs oscillate, describing qualitatively sinusoidal-like paths in longitude–time space, although with sharp transitions from westward to eastward motion due to westerly wind burst activity associated with the CCKWs. We also find that the discrete precipitation elements (CCs) are embedded in continuous tracks of positive moisture anomalies, which are parallel to the Lagrangian trajectories themselves. A conceptual model of the nonlinear SCC–CC interaction is presented.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joaquin E. Blanco, jblanco@rsmas.miami.edu
Save