• Adames, Á. F., 2017: Precipitation budget of the Madden–Julian oscillation. J. Atmos. Sci., 74, 17991817, https://doi.org/10.1175/JAS-D-16-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and Y. Ming, 2018a: Moisture and moist static energy budgets of South Asian monsoon low pressure systems in GFDL AM4.0. J. Atmos. Sci., 75, 21072123, https://doi.org/10.1175/JAS-D-17-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and Y. Ming, 2018b: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci., 75, 20832106, https://doi.org/10.1175/JAS-D-17-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 33273349, https://doi.org/10.1175/JAS-D-13-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and et al. , 2011: The ERA-Interim archive: Version 2.0. ERA Rep. Series 1, 23 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.

  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., J.-Y. Yu, and C. Chou, 2016: Impacts of vertical structure of large-scale vertical motion in tropical climate: Moist static energy framework. J. Atmos. Sci., 73, 44274437, https://doi.org/10.1175/JAS-D-16-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Q., G. J. Zhang, and T. Zhou, 2013: Impacts of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 24172431, https://doi.org/10.1175/JCLI-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195201, https://doi.org/10.1175/1520-0469(1970)027<0195:ASSOEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C.-Y. Tam, 2012: A new perspective on the excitation of low-tropospheric mixed Rossby–gravity waves in association with energy dispersion. J. Atmos. Sci., 69, 13971403, https://doi.org/10.1175/JAS-D-11-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, https://doi.org/10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, T., G. Chen, R. Huang, and X. Shen, 2014: Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions. Int. J. Climatol., 34, 216227, https://doi.org/10.1002/joc.3680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, T., X.-Q. Yang, W. Zhou, R. Huang, L. Wu, and D. Yang, 2016: Synoptic-scale waves in sheared background flow over the western North Pacific. J. Atmos. Sci., 73, 45834603, https://doi.org/10.1175/JAS-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, T., X.-Q. Yang, X. Sun, D. Yang, and C. Chu, 2020a: Reexamination of the climatology and variability of the northwest Pacific monsoon trough using a daily index. J. Climate, 33, 59195938, https://doi.org/10.1175/JCLI-D-19-0459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, T., X.-Q. Yang, L. Wu, R. Huang, and D. Yang, 2020b: How do the monsoon trough and the tropical upper-tropospheric trough affect synoptic-scale waves: A comparative study. J. Meteor. Soc. Japan, 98, 735754, https://doi.org/10.2151/jmsj.2020-037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, T., X.-Q. Yang, J.-Y. Yu, and R. Huang, 2020c: Convective coupling in tropical-depression-type waves. Part I: Rainfall characteristics and moisture structure. J. Atmos. Sci., 77, 34073422, https://doi.org/10.1175/JAS-D-19-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, G., and C. Zhang, 2002: Westward-propagating synoptic-scale disturbances and the ITCZ. J. Atmos. Sci., 59, 10621075, https://doi.org/10.1175/1520-0469(2002)059<1062:WPSSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, https://doi.org/10.1002/2013MS000272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., B. E. Mapes, and G. S. Elsaesser, 2016: A Lagrangian view of moisture dynamics during DYNAMO. J. Atmos. Sci., 73, 19671985, https://doi.org/10.1175/JAS-D-15-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-S., and C.-H. Sui, 2018: A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low-pressure systems. Quart. J. Roy. Meteor. Soc., 141, 10491064, https://doi.org/10.1002/qj.2447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2015: Column-integrated moist static energy budget analysis on various time scales during TOGA COARE. J. Atmos. Sci., 72, 18561871, https://doi.org/10.1175/JAS-D-14-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2017: Gross moist stability analysis: Assessment of satellite-based products in the GMS plane. J. Atmos. Sci., 74, 18191837, https://doi.org/10.1175/JAS-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2016: The influence of African easterly waves on convection over tropical Africa and the East Atlantic. Mon. Wea. Rev., 144, 171192, https://doi.org/10.1175/MWR-D-14-00419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-resolving model. J. Atmos. Sci., 73, 22572278, https://doi.org/10.1175/JAS-D-14-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, https://doi.org/10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397, https://doi.org/10.1175/2008JAS2752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, and M. Gehne, 2016: The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part I. J. Atmos. Sci., 73, 21232145, https://doi.org/10.1175/JAS-D-15-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 25232539, https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58, 15671584, https://doi.org/10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., X. Jiang, S.-P. Xie, and J. J. Benedict, 2014: Process-oriented diagnosis of east Pacific warm pool intraseasonal variability. J. Climate, 27, 63056324, https://doi.org/10.1175/JCLI-D-14-00053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70, 24432466, https://doi.org/10.1175/JAS-D-12-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, https://doi.org/10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57, 17411766, https://doi.org/10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, https://doi.org/10.1002/qj.49712656406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, https://doi.org/10.3894/JAMES.2009.1.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2015: On the convective coupling and moisture organization of east Pacific easterly waves. J. Atmos. Sci., 72, 38503870, https://doi.org/10.1175/JAS-D-15-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2016: Gross moist stability and the Madden–Julian oscillation in reanalysis data. Quart. J. Roy. Meteor. Soc., 142, 27402757, https://doi.org/10.1002/qj.2865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., J. Molinari, and K. I. Mohr, 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209, https://doi.org/10.1175/2010JAS3396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, https://doi.org/10.1175/2007JAS2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127, 29772991, https://doi.org/10.1175/1520-0493(1999)127<2977:CPAPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, https://doi.org/10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumi, Y., and H. Masunaga, 2016: A moist static energy budget analysis of quasi-2-day waves using satellite and reanalysis data. J. Atmos. Sci., 73, 743759, https://doi.org/10.1175/JAS-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3-5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246, https://doi.org/10.2151/jmsj1965.71.2_221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., K.-M. Lau, and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, https://doi.org/10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, C.-Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646, https://doi.org/10.1175/MWR3147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, https://doi.org/10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and M. Zhang, 2015: The coupling of mixed Rossby-gravity waves with diabatic heating during the TRMM-KWAJEX field campaign. Geophys. Res. Lett., 42, 82418249, https://doi.org/10.1002/2015GL065813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Climate, 28, 77867808, https://doi.org/10.1175/JCLI-D-14-00689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Wen, T. Li, and R. Huang, 2014: ENSO-phase dependent TD and MRG wave activity in the western North Pacific. Climate Dyn., 42, 12171227, https://doi.org/10.1007/s00382-013-1754-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Wen, and R. Wu, 2015: Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific. Part I: Observations. J. Climate, 28, 71087127, https://doi.org/10.1175/JCLI-D-14-00806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, https://doi.org/10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2012: Relationships between rain characteristics and environment. Part II: Atmospheric disturbances associated with shallow convection over the eastern tropical Pacific. Mon. Wea. Rev., 140, 28412859, https://doi.org/10.1175/MWR-D-11-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part II: Numerical results. J. Atmos. Sci., 51, 18951914, https://doi.org/10.1175/1520-0469(1994)051<1895:MOTVUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372, https://doi.org/10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zermeño-Díaz, D. M., C. Zhang, P. Kollias, and H. Kalesse, 2015: The role of shallow cloud moistening in MJO and non-MJO convective events over the ARM Manus site. J. Atmos. Sci., 72, 47974820, https://doi.org/10.1175/JAS-D-14-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Song, 2009: Interaction of deep and shallow convection is key to Madden-Julian oscillation simulation. Geophys. Res. Lett., 36, L09708, https://doi.org/10.1029/2009GL037340.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 90 89 9
Full Text Views 35 35 1
PDF Downloads 46 46 2

Convective Coupling in Tropical-Depression-Type Waves. Part II: Moisture and Moist Static Energy Budgets

View More View Less
  • 1 Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, and College of Oceanography, Hohai University, Nanjing
  • | 2 Department of Atmospheric Sciences, National Central University, Taoyuan City
  • | 3 China Meteorological Administration–Nanjing University Joint Laboratory for Climate Prediction Studies, and Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing
  • | 4 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing
© Get Permissions
Restricted access

Abstract

The companion of this paper, Part I, discovered the characteristics of the rainfall progression in tropical-depression (TD)-type waves over the western North Pacific. In Part II, the large-scale controls on the convective rainfall progression have been investigated using the ERA-Interim data and the TRMM 3B42 precipitation-rate data during June–October from 1998 to 2013 through budgets of moist static energy (MSE) and moisture. A buildup of column-integrated MSE occurs in advance of deep convection, and an export of MSE occurs following deep convection, which is consistent with the MSE recharge–discharge paradigm. The MSE recharge–discharge is controlled by horizontal processes, whereby horizontal moisture advection causes net MSE import prior to deep convection. Such moistening by horizontal advection creates a moist midtroposphere, which helps destabilize the atmospheric column, leading to the development of deep convective rainfall. Following the heaviest rainfall, negative horizontal moisture advection dries the troposphere, inhibiting convection. Such moistening and drying processes explain why deep convection can develop without preceding shallow convection. The advection of moisture anomalies by the mean horizontal flow controls the tropospheric moistening and drying processes. As the TD-type waves propagate northwestward in coincidence with the northwestward environmental flow, the moisture, or convective rainfall, is phase locked to the waves. The critical role of the MSE import by horizontal advection in modulating the rainfall progression is supported by the anomalous gross moist stability (AGMS), where the lowest AGMS corresponds to the quickest increase in the precipitation rate prior to the rainfall maximum.

Corresponding author: Dr. Tao Feng, fengtao@hhu.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-19-0172.1.

Abstract

The companion of this paper, Part I, discovered the characteristics of the rainfall progression in tropical-depression (TD)-type waves over the western North Pacific. In Part II, the large-scale controls on the convective rainfall progression have been investigated using the ERA-Interim data and the TRMM 3B42 precipitation-rate data during June–October from 1998 to 2013 through budgets of moist static energy (MSE) and moisture. A buildup of column-integrated MSE occurs in advance of deep convection, and an export of MSE occurs following deep convection, which is consistent with the MSE recharge–discharge paradigm. The MSE recharge–discharge is controlled by horizontal processes, whereby horizontal moisture advection causes net MSE import prior to deep convection. Such moistening by horizontal advection creates a moist midtroposphere, which helps destabilize the atmospheric column, leading to the development of deep convective rainfall. Following the heaviest rainfall, negative horizontal moisture advection dries the troposphere, inhibiting convection. Such moistening and drying processes explain why deep convection can develop without preceding shallow convection. The advection of moisture anomalies by the mean horizontal flow controls the tropospheric moistening and drying processes. As the TD-type waves propagate northwestward in coincidence with the northwestward environmental flow, the moisture, or convective rainfall, is phase locked to the waves. The critical role of the MSE import by horizontal advection in modulating the rainfall progression is supported by the anomalous gross moist stability (AGMS), where the lowest AGMS corresponds to the quickest increase in the precipitation rate prior to the rainfall maximum.

Corresponding author: Dr. Tao Feng, fengtao@hhu.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-19-0172.1.

Save