• Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, https://doi.org/10.1175/JAS-D-14-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bancalá, S., K. Krüger, and M. Giorgetta, 2012: The preconditioning of major sudden stratospheric warmings. J. Geophys. Res., 117, D04101, https://doi.org/10.1029/2011JD016769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9, 6376, https://doi.org/10.5194/essd-9-63-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandran, A., R. R. Garcia, R. L. Collins, and L. C. Chang, 2013: Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012. Geophys. Res. Lett., 40, 18611867, https://doi.org/10.1002/grl.50373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., Y.-H. Kim, H.-J. Choi, and J.-Y. Kim, 2011: Influence of gravity waves in the tropical upwelling: WACCM simulations. J. Atmos. Sci., 68, 25992612, https://doi.org/10.1175/JAS-D-11-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2014: What drives the Brewer–Dobson circulation? J. Atmos. Sci., 71, 38373855, https://doi.org/10.1175/JAS-D-14-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., S. D. Eckermann, K. W. Hoppel, and F. Sassi, 2011: Mesospheric precursors to the major stratospheric sudden warming of 2009: Validation and dynamical attribution using a ground-to-edge-of-space data assimilation system. J. Adv. Model. Earth Syst., 3, M10002, https://doi.org/10.1029/2011MS000067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duck, T. J., J. A. Whiteway, and A. I. Carswell, 1998: Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming. Geophys. Res. Lett., 25, 28132816, https://doi.org/10.1029/98GL02113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duck, T. J., J. A. Whiteway, and A. I. Carswell, 2001: The gravity wave–Arctic stratospheric vortex interaction. J. Atmos. Sci., 58, 35813596, https://doi.org/10.1175/1520-0469(2001)058<3581:TGWASV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and R. K. Scott, 2005: Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci., 62, 36613682, https://doi.org/10.1175/JAS3557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 22382245, https://doi.org/10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., R. Lieberman, J. M. Russell III, and M. G. Mlynczak, 2005: Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J. Atmos. Sci., 62, 43844399, https://doi.org/10.1175/JAS3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gavrilov, N. M., A. V. Koval, A. I. Pogoreltsev, and E. N. Savenkova, 2018: Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios. Adv. Space Res., 61, 18191836, https://doi.org/10.1016/j.asr.2017.08.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and T. Hirooka, 2017: Extraordinary features of the planetary wave propagation during the boreal winter 2013/2014 and the zonal wave number two predominance. J. Geophys. Res. Atmos., 122, 11 37411 387, https://doi.org/10.1002/2017JD027053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., A. Goto, H. Hasegawa, N. Fujikawa, H. Naoe, and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, https://doi.org/10.1175/2009JAS3320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., M. McIntyre, T. Shepherd, C. Marks, and K. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirooka, T., and I. Hirota, 1985: Normal mode Rossby waves observed in the upper stratosphere. Part II: Second antisymmetric and symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci., 42, 536548, https://doi.org/10.1175/1520-0469(1985)042<0536:NMRWOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1980: The dynamics of sudden stratospheric warmings. Annu. Rev. Earth Planet. Sci., 8, 169190, https://doi.org/10.1146/annurev.ea.08.050180.001125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507, https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1984: The generation of mesospheric planetary waves by zonally asymmetric gravity wave breaking. J. Atmos. Sci., 41, 34273430, https://doi.org/10.1175/1520-0469(1984)041<3427:TGOMPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, S. K., 1968: Governing equations and spectra for atmospheric motion and transports in frequency, wave-number space. J. Atmos. Sci., 25, 3238, https://doi.org/10.1175/1520-0469(1968)025<0032:GEASFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and M. Flatau, 2010: Hindcasting the January 2009 Arctic sudden stratospheric warming and its influence on the Arctic Oscillation with unified parameterization of orographic drag in NOGAPS. Part I: Extended-range stand-alone forecast. Wea. Forecasting, 25, 16281644, https://doi.org/10.1175/2010WAF2222421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishore, P., I. Velicogna, M. Venkat Ratnam, J. H. Jiang, and G. N. Madhavi, 2012: Planetary waves in the upper stratosphere and lower mesosphere during 2009 Arctic major stratospheric warming. Ann. Geophys., 30, 15291538, https://doi.org/10.5194/angeo-30-1529-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., M. J. Alexander, Y. J. Orsolini, D. L. Wu, M. Xue, J. H. Richter, and C. Yamashita, 2011: Mesoscale simulations of gravity waves during the 2008–2009 major stratospheric sudden warming. J. Geophys. Res., 116, D17104, https://doi.org/10.1029/2010JD015190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H. L., E. R. Talaat, R. G. Roble, R. S. Lieberman, D. M. Riggin, and J. H. Yee, 2004: The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. J. Geophys. Res., 109, D21112, https://doi.org/10.1029/2004JD004795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., L. J. Gray, I. P. White, and T. J. Bracegirdle, 2017: Stratospheric response to the 11-yr solar cycle: Breaking planetary waves, internal reflection, and resonance. J. Climate, 30, 71697190, https://doi.org/10.1175/JCLI-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and et al. , 2009: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36, L12815, https://doi.org/10.1029/2009GL038586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., S.-W. Son, M. Taguchi, and A. H. Butler, 2018: A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events. Atmos. Chem. Phys., 18, 71697187, https://doi.org/10.5194/acp-18-7169-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., R. E. Hibbins, and M. J. Jarvis, 2011: Properties of the quasi 16 day wave derived from EOS MLS observations. J. Geophys. Res., 116, D06112, https://doi.org/10.1029/2010JD014719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., and N. A. McFarlane, 1993: Interactions between orographic gravity wave drag and forced stationary planetary waves in the winter Northern Hemisphere middle atmosphere. J. Atmos. Sci., 50, 19661990, https://doi.org/10.1175/1520-0469(1993)050<1966:IBOGWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., M. J. Alexander, and D. L. Wu, 2000: Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation. J. Geophys. Res., 105, 11 94711 967, https://doi.org/10.1029/2000JD900097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. NASA Tech. Rep. NASA/TM-2012-104606, Vol. 28, 115 pp., https://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf.

  • Onogi, K., and et al. , 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, https://doi.org/10.2151/jmsj.85.369.

  • Pancheva, D., P. Mukhtarov, and B. Andonov, 2007: Zonally symmetric oscillations in the Northern Hemisphere stratosphere during the winter of 2003–2004. Geophys. Res. Lett., 34, L04807, https://doi.org/10.1029/2006GL028666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pancheva, D., and et al. , 2008: Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. Ann. Geophys., 26, 467483, https://doi.org/10.5194/angeo-26-467-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pancheva, D., P. Mukhtarov, B. Andonov, N. J. Mitchell, and J. M. Forbes, 2009: Planetary waves observed by TIMED/SABER in coupling the stratosphere–mesosphere–lower thermosphere during the winter of 2003/2004: Part 2—Altitude and latitude planetary wave structure. J. Atmos. Sol.-Terr. Phys., 71, 7587, https://doi.org/10.1016/j.jastp.2008.09.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, https://doi.org/10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodas, C., and M. Pulido, 2017: A climatology of Rossby wave generation in the middle atmosphere of the Southern Hemisphere from MERRA reanalysis. J. Geophys. Res. Atmos., 122, 89828997, https://doi.org/10.1002/2017JD026597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., and H.-Y. Chun, 2005: Stratospheric major sudden warmings revealed in NCEP reanalysis data for 41 years (1958-1999). J. Korean Meteor. Soc., 41, 173190.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., and H. L. Liu, 2014: Westward traveling planetary wave events in the lower thermosphere during solar minimum conditions simulated by SD-WACCM-X. J. Atmos. Sol.-Terr. Phys., 119, 1126, https://doi.org/10.1016/j.jastp.2014.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassi, F., R. Garcia, and K. Hoppel, 2012: Large-scale Rossby normal modes during some recent Northern Hemisphere winters. J. Atmos. Sci., 69, 820839, https://doi.org/10.1175/JAS-D-11-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., and M. Nomoto, 2015: Gravity wave–induced anomalous potential vorticity gradient generating planetary waves in the winter mesosphere. J. Atmos. Sci., 72, 36093624, https://doi.org/10.1175/JAS-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheffler, G., M. Pulido, and C. Rodas, 2018: The role of gravity wave drag optimization in the splitting of the Antarctic vortex in the 2002 sudden stratospheric warming. Geophys. Res. Lett., 45, 67196725, https://doi.org/10.1029/2018GL077993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepers, D., E. de Boisséson, R. Eresmaa, C. Lupu, and P. de Rosnay, 2018: CERA-SAT: A coupled satellite-era reanalysis. ECMWF Newsletter, No. 155, ECMWF, Reading, UnitedKingdom, 32–37, https://www.ecmwf.int/en/newsletter/155/meteorology/cera-sat-coupled-satellite-era-reanalysis.

  • Scinocca, J., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siskind, D. E., S. D. Eckermann, J. P. McCormack, L. Coy, K. W. Hoppel, and N. L. Baker, 2010: Case studies of the mesospheric response to recent minor, major, and extended stratospheric warmings. J. Geophys. Res., 115, D00N03, https://doi.org/10.1029/2010JD014114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2012: Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 34203432, https://doi.org/10.1175/JAS-D-11-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1985: Wave transience and wave-mean flow interaction caused by the interference of stationary and traveling waves. J. Atmos. Sci., 42, 529535, https://doi.org/10.1175/1520-0469(1985)042<0529:WTAWMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 2003: The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci., 60, 30333041, https://doi.org/10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, B.-G., and H.-Y. Chun, 2016: Residual mean circulation and temperature changes during the evolution of stratospheric sudden warming revealed in MERRA. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-729.

    • Search Google Scholar
    • Export Citation
  • Thurairajah, B., R. L. Collins, V. L. Harvey, R. S. Lieberman, M. Gerding, K. Mizutani, and J. M. Livingston, 2010: Gravity wave activity in the Arctic stratosphere and mesosphere during the 2007–2008 and 2008–2009 stratospheric sudden warming events. J. Geophys. Res., 115, D00N06, https://doi.org/10.1029/2010JD014125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venkat Ratnam, M., T. Tsuda, C. Jacobi, and Y. Aoyama, 2004: Enhancement of gravity wave activity observed during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements. Geophys. Res. Lett., 31, L16101, https://doi.org/10.1029/2004GL019789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and M. J. Alexander, 2009: Gravity wave activity during stratospheric sudden warmings in the 2007–2008 Northern Hemisphere winter. J. Geophys. Res., 114, D18108, https://doi.org/10.1029/2009JD011867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and S. S. Shen, 1999: Estimation of spatial degrees of freedom of a climate field. J. Climate, 12, 12801291, https://doi.org/10.1175/1520-0442(1999)012<1280:EOSDOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., T. J. Duck, D. P. Donovan, J. C. Bird, S. R. Pal, and A. I. Carswell, 1997: Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys. Res. Lett., 24, 13871390, https://doi.org/10.1029/97GL01322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamashita, C., H. L. Liu, and X. Chu, 2010: Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations. Geophys. Res. Lett., 37, L22806, https://doi.org/10.1029/2010GL045437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zülicke, C., E. Becker, V. Matthias, D. H. W. Peters, H. Schmidt, H.-L. Liu, L. de la Torre, and D. M. Mitchell, 2018: Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. J. Climate, 31, 11071133, https://doi.org/10.1175/JCLI-D-17-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 254 254 16
Full Text Views 86 86 10
PDF Downloads 99 99 11

Role of Gravity Waves in a Vortex-Split Sudden Stratospheric Warming in January 2009

View More View Less
  • 1 Division of Polar Climate Sciences, Korea Polar Research Institute, Incheon, South Korea
  • | 2 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 3 Division of Polar Climate Sciences, Korea Polar Research Institute, Incheon, South Korea
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The role of gravity waves (GWs) in a sudden stratospheric warming (SSW) event that occurred in January 2009 (SSW09) is investigated using the MERRA-2 dataset. Nearly 2 weeks prior to the central date (lag = 0), at which the zonal-mean zonal wind at 10 hPa and 60°N first becomes negative, westward GW drag (GWD) is significantly enhanced in the lower mesosphere and stratosphere. At 5 days before lag = 0, planetary waves (PWs) of zonal wavenumber 2 (ZWN-2) in the stratosphere are enhanced, while PWs of ZWN-1 are weakened, which are evident from the amplitudes of the PWs and their Eliassen–Palm flux divergence (EPD). To examine the relationship between PWs and GWs, a nonconservative GWD (NCGWD) source term of the linearized quasigeostrophic potential vorticity equation is considered. A ZWN-2 pattern of the NCGWD forcing is developed around z = 55–60 km with a secondary peak around z = 40 km just before the PWs of ZWN-2 in the stratosphere began to enhance. A significant positive correlation between the NCGWD forcing in the upper stratosphere and lower mesosphere (USLM; 0.3–0.1 hPa in the present data) and the PWs of ZWN-2 in the stratosphere (5–1 hPa) exists. This result demonstrates that the amplification of the PWs of ZWN-2 in the stratosphere before the onset of SSW09 is likely related to the generation of PWs by GWD in the USLM, which is revealed by the enhanced downward-propagating PWs of ZWN-2 into the stratosphere from above.

Corresponding author: Hye-Yeong Chun, chunhy@yonsei.ac.kr

Abstract

The role of gravity waves (GWs) in a sudden stratospheric warming (SSW) event that occurred in January 2009 (SSW09) is investigated using the MERRA-2 dataset. Nearly 2 weeks prior to the central date (lag = 0), at which the zonal-mean zonal wind at 10 hPa and 60°N first becomes negative, westward GW drag (GWD) is significantly enhanced in the lower mesosphere and stratosphere. At 5 days before lag = 0, planetary waves (PWs) of zonal wavenumber 2 (ZWN-2) in the stratosphere are enhanced, while PWs of ZWN-1 are weakened, which are evident from the amplitudes of the PWs and their Eliassen–Palm flux divergence (EPD). To examine the relationship between PWs and GWs, a nonconservative GWD (NCGWD) source term of the linearized quasigeostrophic potential vorticity equation is considered. A ZWN-2 pattern of the NCGWD forcing is developed around z = 55–60 km with a secondary peak around z = 40 km just before the PWs of ZWN-2 in the stratosphere began to enhance. A significant positive correlation between the NCGWD forcing in the upper stratosphere and lower mesosphere (USLM; 0.3–0.1 hPa in the present data) and the PWs of ZWN-2 in the stratosphere (5–1 hPa) exists. This result demonstrates that the amplification of the PWs of ZWN-2 in the stratosphere before the onset of SSW09 is likely related to the generation of PWs by GWD in the USLM, which is revealed by the enhanced downward-propagating PWs of ZWN-2 into the stratosphere from above.

Corresponding author: Hye-Yeong Chun, chunhy@yonsei.ac.kr
Save