• Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, https://doi.org/10.1029/1999JD901161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alapaty, K., D. Niyogi, F. Chen, P. Pyle, A. Chandrasekar, and N. Seaman, 2008: Development of the flux-adjusting surface data assimilation system for mesoscale models. J. Appl. Meteor. Climatol., 47, 23312350, https://doi.org/10.1175/2008JAMC1831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alapaty, K., J. S. Kain, J. S. Herwehe, O. R. Bullock, M. S. Mallard, T. L. Spero, and C. G. Nolte, 2014: Multiscale Kain-Fritsch scheme: Formulations and tests. 13th Annual CMAS Conf., Chapel Hill, NC, CMAS.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., A. Bogusz, M. J. Lauridsen, and C. J. Nauert, 2018: Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments. Bull. Amer. Meteor. Soc., 99, 615628, https://doi.org/10.1175/BAMS-D-17-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer-Nicholls, S., D. Lowe, D. M. Schultz, and G. McFiggans, 2016: Aerosol–radiation–cloud interactions in a regional coupled model: The effects of convective parameterization and resolution. Atmos. Chem. Phys., 16, 55735594, https://doi.org/10.5194/acp-16-5573-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of clouds and precipitation. Proces Verbaux de l’Association de Météorologie, Lisbon, Portugal, International Union of Geodesy and Geophysics, 156178.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571657.

    • Search Google Scholar
    • Export Citation
  • Bullock, O. R., K. Alapaty, J. A. Herwehe, M. S. Mallard, T. L. Otte, R. C. Gilliam, and C. G. Nolte, 2014: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteor. Climatol., 53, 2033, https://doi.org/10.1175/JAMC-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/US7 MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W.-C. Wang, and J.-P. Chen, 2015: Aerosol–stratocumulus–radiation interactions over southeast Pacific. J. Atmos. Sci., 72, 26122621, https://doi.org/10.1175/JAS-D-14-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, J. E. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 21, Amer. Meteor. Soc., 2932, https://doi.org/10.1175/0065-9401-21.43.1.

    • Search Google Scholar
    • Export Citation
  • Denman, K. Y., and et al. , 2007: Coupling between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499587.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296,D22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121133.

  • Ghan, S., and et al. , 2016: Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proc. Natl. Acad. Sci. USA, 113, 58045811, https://doi.org/10.1073/pnas.1514036113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glotfelty, T., J. He, and Y. Zhang, 2017: The impact of future climate policy scenarios on air quality and aerosol/cloud interactions using an advanced version of CESM/CAM5: Part I. Model evaluation for the current decadal simulations. Atmos. Environ., 152, 222239, https://doi.org/10.1016/j.atmosenv.2016.12.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glotfelty, T., K. Alapaty, J. He, P. Hawbecker, X. Song, and G. Zhang, 2019: The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI): Development, evaluation, and initial application. Mon. Wea. Rev., 147, 14911511, https://doi.org/10.1175/MWR-D-18-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., and K. Alapaty, 2018: Precipitation partitioning in multiscale atmospheric simulations: Impacts of stability restoration methods. J. Geophys. Res. Atmos., 123, 10 18510 201, https://doi.org/10.1029/2018JD028710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., T. Glotfelty, K. Yahya, K. Alapaty, and S. Yu, 2017: Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models? Atmos. Environ., 154, 4252, https://doi.org/10.1016/j.atmosenv.2017.01.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93 (1), ES6ES9, https://doi.org/10.1175/2011BAMS3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., S. C. van den Heever, C. M. Naud, S. M. Saleeby, and D. J. Posselt, 2013: Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci., 70, 17681783, https://doi.org/10.1175/JAS-D-12-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20 29320 310, https://doi.org/10.1029/2000JD000089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y., 2013: A cumulus cloud microphysics parametrization for cloud-resolving models. J. Atmos. Sci., 70, 14231436, https://doi.org/10.1175/JAS-D-12-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushta, J., G. Kallos, M. Astitha, S. Solomos, C. Spyrou, C. Mitsakou, and J. Lelieveld, 2014: Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. J. Geophys. Res. Atmos., 119, 14631491, https://doi.org/10.1002/2013JD020714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and J. Jin, 2014: Improvements in WRF simulation skills of southeastern United States summer rainfall: Physical parameterization and horizontal resolution. Climate Dyn., 43, 20772091, https://doi.org/10.1007/s00382-013-2031-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. H., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, https://doi.org/10.1127/0941-2948/2005/0059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, P.-L., and et al. , 2015: How does increasing horizontal resolution in a global climate model improve the simulation of aerosol-cloud interactions? Geophys. Res. Lett., 42, 50585065, https://doi.org/10.1002/2015GL064183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., 2016: The representation of cumulus convection in high-resolution simulations of the 2013 Colorado Front Range flood. Mon. Wea. Rev., 144, 42654278, https://doi.org/10.1175/MWR-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, S., and L. Rotstayn, 2006: The radiative influence of aerosol effects on liquid-phase cumulus and stratiform clouds based on sensitivity studies with two climate models. Climate Dyn., 27, 345356, https://doi.org/10.1007/s00382-006-0139-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016: Assessment and implications of NCEP stage IV quantitative precipitation estimates for product intercomparisons. Wea. Forecasting, 31, 371394, https://doi.org/10.1175/WAF-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penner, J. E., and et al. , 2006: Model intercomparison of indirect aerosol indirect effects. Atmos. Chem. Phys., 6, 33913405, https://doi.org/10.5194/acp-6-3391-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Possner, A., E. M. Zubler, U. Lohmann, and C. Schär, 2016: The resolution dependence of cloud effects and ship-induced aerosol-cloud interactions in marine stratocumulus. J. Geophys. Res. Atmos., 121, 48104829, https://doi.org/10.1002/2015JD024685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quaas, J., and et al. , 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, https://doi.org/10.5194/acp-9-8697-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and S. C. van den Heever, 2013: Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteor. Climatol., 52, 26012622, https://doi.org/10.1175/JAMC-D-12-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for Weather Research and Forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and G. J. Zhang, 2011: Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. J. Geophys. Res., 116, D02201, https://doi.org/10.1029/2010JD014833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area model. Part I: Experiments with synoptic scale data. Mon. Wea. Rev., 118, 12501277, https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434, https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, https://doi.org/10.1175/2010JAS3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonttila, J., H. Jarvinen, and P. Raisanen, 2015: Explicit representation of subgrid variability in cloud microphysics yields weaker aerosol indirect effect in the ECHAM5-HAM2 climate model. Atmos. Chem. Phys., 15, 703714, https://doi.org/10.5194/acp-15-703-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C., E. Zipser, and C. Liu, 2013: A investigation of the aerosol indirect effect on convective intensity using satellite observations. J. Atmos. Sci., 71, 430447, https://doi.org/10.1175/JAS-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. J. A. Barth, 331 pp.

  • White, B., E. Gryspeerdt, P. Stier, H. Morrison, G. Thompson, and Z. Kipling, 2017: Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys., 17, 12 14512 175, https://doi.org/10.5194/acp-17-12145-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., E. J. Highwood, B. B. B. Booth, and K. S. Carslaw, 2015: Quantifying sources of inter-model diversity in the cloud albedo effect. Geophys. Res. Lett., 42, 15681575, https://doi.org/10.1002/2015GL063301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and et al. , 2015: Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison. Atmos. Chem. Phys., 15, 153172, https://doi.org/10.5194/acp-15-153-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and X. Liu, 2015: Aerosol-cloud-precipitation interactions in WRF Model: Sensitivity to autoconversion parameterization. J. Meteor. Res., 29, 7281, https://doi.org/10.1007/s13351-014-4065-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. Andrews, P. M. Forster, and K. E. Taylor, 2014: Quantifying components of aerosol-cloud-radiation interactions in climate models. J. Geophys. Res. Atmos., 119, 75997615, https://doi.org/10.1002/2014JD021710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., K. Alapaty, J. S. Herwehe, A. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, https://doi.org/10.1175/MWR-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 111 111 22
Full Text Views 49 49 5
PDF Downloads 53 53 4

Studying Scale Dependency of Aerosol–Cloud Interactions Using Multiscale Cloud Formulations

View More View Less
  • 1 Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
  • | 2 Center for Environmental Measurements and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
  • | 3 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • | 4 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
  • | 5 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI) configuration is used to investigate the scale dependency of aerosol–cloud interactions (ACI) across the “gray zone” scales for grid-scale and subgrid-scale clouds. The impacts of ACI on weather are examined across regions in the eastern and western United States at 36, 12, 4, and 1 km grid spacing for short-term periods during the summer of 2006. ACI impacts are determined by comparing simulations with current climatological aerosol levels to simulations with aerosol levels reduced by 90%. The aerosol–cloud lifetime effect is found to be the dominant process leading to suppressed precipitation in regions of the eastern United States, while regions in the western United States experience offsetting impacts on precipitation from the cloud lifetime effect and other effects that enhance precipitation. Generally, the cloud lifetime effect weakens with decreasing grid spacing due to a decrease in relative importance of autoconversion compared to accretion. Subgrid-scale ACI are dominant at 36 km, while grid-scale ACI are dominant at 4 and 1 km. At 12 km grid spacing, grid-scale and subgrid-scale ACI processes are comparable in magnitude and spatial coverage, but random perturbations in grid-scale ACI impacts make the overall grid-scale ACI impact appear muted. This competing behavior of grid- and subgrid-scale clouds complicate the understanding of ACI at 12 km within the current WRF modeling framework. The work implies including subgrid-scale cloud microphysics and ice/mixed-phase-cloud ACI processes may be necessary in weather and climate models to study ACI effectively.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0203.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kiran Alapaty, alapaty.kiran@epa.gov

Abstract

The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI) configuration is used to investigate the scale dependency of aerosol–cloud interactions (ACI) across the “gray zone” scales for grid-scale and subgrid-scale clouds. The impacts of ACI on weather are examined across regions in the eastern and western United States at 36, 12, 4, and 1 km grid spacing for short-term periods during the summer of 2006. ACI impacts are determined by comparing simulations with current climatological aerosol levels to simulations with aerosol levels reduced by 90%. The aerosol–cloud lifetime effect is found to be the dominant process leading to suppressed precipitation in regions of the eastern United States, while regions in the western United States experience offsetting impacts on precipitation from the cloud lifetime effect and other effects that enhance precipitation. Generally, the cloud lifetime effect weakens with decreasing grid spacing due to a decrease in relative importance of autoconversion compared to accretion. Subgrid-scale ACI are dominant at 36 km, while grid-scale ACI are dominant at 4 and 1 km. At 12 km grid spacing, grid-scale and subgrid-scale ACI processes are comparable in magnitude and spatial coverage, but random perturbations in grid-scale ACI impacts make the overall grid-scale ACI impact appear muted. This competing behavior of grid- and subgrid-scale clouds complicate the understanding of ACI at 12 km within the current WRF modeling framework. The work implies including subgrid-scale cloud microphysics and ice/mixed-phase-cloud ACI processes may be necessary in weather and climate models to study ACI effectively.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0203.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kiran Alapaty, alapaty.kiran@epa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.39 MB)
Save