• Alves, J., 2006: Numerical modeling of ocean swell contributions to the global wind-wave climate. Ocean Modell., 11, 98122, https://doi.org/10.1016/j.ocemod.2004.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E., L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, https://doi.org/10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., B. Chapron, R. Ezraty, and D. Vandemark, 2002: A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Oceanic Technol., 19, 18491859, https://doi.org/10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C., III, 2012: In situ wave measurements: Sensor comparison and data analysis. M.S. thesis, Dept. of Applied Marine Physics, University of Miami, 208 pp.

  • Collins, C., III, H. Potter, B. Lund, H. Tamura, and H. Graber, 2018: Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res. Oceans, 123, 773793, https://doi.org/10.1002/2017JC012943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M., W. Drennan, and K. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, https://doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. Graber, and M. Donelan, 1999: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr., 29, 18531864, https://doi.org/10.1175/1520-0485(1999)029<1853:EFTEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., D. Graber, C. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, A., L. Sanford, and S. Suttles, 2015: Wind stress dynamics in Chesapeake Bay: Spatiotemporal variability and wave dependence in a fetch-limited environment. J. Phys. Oceanogr., 45, 26792696, https://doi.org/10.1175/JPO-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foreman, R., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332, https://doi.org/10.1175/2010JPO4420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Nava, H., F. Ocampo-Torres, P. Osuna, and M. Donelan, 2009: Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res., 114, C12008, https://doi.org/10.1029/2009JC005389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Nava, H., F. Ocampo-Torres, P. Hwang, and P. Osuna, 2012: Reduction of wind stress due to swell at high wind conditions. J. Geophys. Res., 117, C00J11, https://doi.org/10.1029/2011JC007833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graber, H., E. Terray, M. Donelan, D. Drennan, J. Van Leer, and D. Peters, 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708720, https://doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A., and C. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, https://doi.org/10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K., S. Belcher, and P. Sullivan, 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282, https://doi.org/10.1175/2010JPO4377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, D., 1966: The wave-driven wind. J. Atmos. Sci., 23, 688693, https://doi.org/10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory. J. Fluid Mech., 12, 481500, https://doi.org/10.1017/S0022112062000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Rutgersson, E. Sahlée, A. Smedman, T. Hristov, W. Drennan, and K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, https://doi.org/10.1007/s10546-012-9776-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahlée, A. Smedman, A. Rutgersson, and E. Nilsson, 2015: Surface stress over the ocean in swell-dominated conditions during moderate winds, 2015. J. Atmos. Sci., 72, 47774795, https://doi.org/10.1175/JAS-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., E. Sahlée, A. Smedman, A. Rutgersson, and E. Nilsson, 2018: The transition from downward to upward air–sea momentum flux in swell-dominated light wind conditions. J. Atmos. Sci., 75, 25792588, https://doi.org/10.1175/JAS-D-17-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L., M. Powell, and J. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., P. Sullivan, S. Wang, J. Doyle, and L. Vincent, 2016: Impact of swell on air–sea momentum flux and marine boundary layer under low-wind conditions. J. Atmos. Sci., 73, 26832697, https://doi.org/10.1175/JAS-D-15-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, J., D. Wang, and P. Hwang, 2005: A study of wave effects on wind stress over the ocean in a fetch-limited case. J. Geophys. Res., 110, C02020, https://doi.org/10.1029/2003JC002258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of A. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, https://doi.org/10.1029/JZ069i024p05181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettersson, H., H. Graber, D. Hauser, C. Quentin, K. Kahma, W. Drennan, and M. Donelan, 2003: Directional wave measurements from three wave sensors during the FETCH experiment. J. Geophys. Res., 108, 8061, https://doi.org/10.1029/2001JC001164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, H., 2015: Swell and the drag coefficient. Ocean Dyn., 65, 375384, https://doi.org/10.1007/s10236-015-0811-4.

  • Powell, M., P. Vickery, and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Resio, D., V. Swail, R. Jensen, and V. Cardone, 1999: Wind speed scaling in fully developed seas. J. Phys. Oceanogr., 29, 18011811, https://doi.org/10.1175/1520-0485(1999)029<1801:WSSIFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, K., and J. Smith, 1998: Removing wave effects from the wind stress vector. J. Geophys. Res., 103, 13631374, https://doi.org/10.1029/97JC02571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahlée, E., W. Drennan, H. Potter, and M. Rebozo, 2012: Waves and air-sea fluxes from a drifting ASIS buoy during the Southern Ocean Gas Exchange experiment. J. Geophys. Res., 117, C08003, https://doi.org/10.1029/2012JC008032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semedo, A., K. Suselj, A. Rutgerson, and A. Steel, 2011: A global view on the wind sea and swell climate and variability from ERA-40. J. Climate, 24, 14611479, https://doi.org/10.1175/2010JCLI3718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högstrom, H. Bergström, A. Rutgersson, K. Kahma, and H. Pettersson, 1999: A case study of air-sea interaction during swell conditions. J. Geophys. Res., 104, 25 83325 851, https://doi.org/10.1029/1999JC900213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., X. Larsen, U. Högstrom, K. Kahma, and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108, 3367, https://doi.org/10.1029/2002JC001526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A., U. Högström, and E. Sahleé, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763, https://doi.org/10.1175/2009JAS2952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P., J. Edson, T. Hristov, and J. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, https://doi.org/10.1175/2007JAS2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, E., and C. Vincent, 1985: Significant wave height for shallow water design. J Waterw. Port Coastal Ocean Eng., 111, 828842, https://doi.org/10.1061/(ASCE)0733-950X(1985)111:5(828).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J. E., M. D’Asaro, W. Cronin, R. Rogers, A. Harcourt, and A. Shcherbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 59515962, https://doi.org/10.1002/2013JC008837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1994: The sea surface is aerodynamically rough even under light winds. Bound.-Layer Meteor., 69, 149158, https://doi.org/10.1007/BF00713300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931950, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 143 143 43
Full Text Views 36 36 4
PDF Downloads 31 31 3

Effect of Swell on Wind Stress for Light to Moderate Winds

View More View Less
  • 1 Center for Southeastern Tropical Advanced Remote Sensing, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
  • | 2 Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
  • | 3 Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, Duck, North Carolina
© Get Permissions
Restricted access

Abstract

Buoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A Uu*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different Uu* equation for U < 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles L. Vincent, cvincent@cstars.miami.edu

Abstract

Buoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A Uu*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different Uu* equation for U < 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles L. Vincent, cvincent@cstars.miami.edu
Save