• Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164184, https://doi.org/10.1175/1520-0469(1983)040<0164:LSTDTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boffetta, G., and S. Musacchio, 2001: Predictability of the inverse energy cascade in 2D turbulence. Phys. Fluids, 13, 10601062, https://doi.org/10.1063/1.1350877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and M. Leutbecher, 2015: The forecast skill horizon. Quart. J. Roy. Meteor. Soc., 141, 33663382, https://doi.org/10.1002/qj.2619.

  • Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus, 39A, 474491, https://doi.org/10.1111/j.1600-0870.1987.tb00322.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and M. Gingrich, 2014: Atmospheric predictability: Why butterflies are not of practical importance. J. Atmos. Sci., 71, 24762488, https://doi.org/10.1175/JAS-D-14-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 14771497, https://doi.org/10.1175/JAS-D-17-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257276, https://doi.org/10.1175/JAS-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, T. Y., M. Leutbecher, S. Reich, and T. G. Shepherd, 2019: Atmospheric predictability: Revisiting the inherent finite-time barrier. J. Atmos. Sci., 76, 38833892, https://doi.org/10.1175/JAS-D-19-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798, https://doi.org/10.1256/SMSQJ.49401.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., and G. K. Vallis, 1991: Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech., 228, 321342, https://doi.org/10.1017/S0022112091002720.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Analytical theories of turbulence. J. Fluid Mech., 41, 363386, https://doi.org/10.1017/S0022112070000642.

  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, https://doi.org/10.1175/2007JAS2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 14191438, https://doi.org/10.1175/JAS-D-15-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., M. Horvat, Ž. Zaplotnik, and L. Magnusson, 2017: Scale-dependent estimates of the growth of forecast uncertainties in a global prediction system. Tellus, 69A, 1287492, https://doi.org/10.1080/16000870.2017.1287492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 197 197 17
Full Text Views 60 60 4
PDF Downloads 78 78 6

Impact of the Mesoscale Range on Error Growth and the Limits to Atmospheric Predictability

View More View Less
  • 1 Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
  • | 2 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 3 Institute of Mathematics, University of Potsdam, Potsdam, Germany
  • | 4 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Global numerical weather prediction (NWP) models have begun to resolve the mesoscale k−5/3 range of the energy spectrum, which is known to impose an inherently finite range of deterministic predictability per se as errors develop more rapidly on these scales than on the larger scales. However, the dynamics of these errors under the influence of the synoptic-scale k−3 range is little studied. Within a perfect-model context, the present work examines the error growth behavior under such a hybrid spectrum in Lorenz’s original model of 1969, and in a series of identical-twin perturbation experiments using an idealized two-dimensional barotropic turbulence model at a range of resolutions. With the typical resolution of today’s global NWP ensembles, error growth remains largely uniform across scales. The theoretically expected fast error growth characteristic of a k−5/3 spectrum is seen to be largely suppressed in the first decade of the mesoscale range by the synoptic-scale k−3 range. However, it emerges once models become fully able to resolve features on something like a 20-km scale, which corresponds to a grid resolution on the order of a few kilometers.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tsz Yan Leung, t.leung@reading.ac.uk

Abstract

Global numerical weather prediction (NWP) models have begun to resolve the mesoscale k−5/3 range of the energy spectrum, which is known to impose an inherently finite range of deterministic predictability per se as errors develop more rapidly on these scales than on the larger scales. However, the dynamics of these errors under the influence of the synoptic-scale k−3 range is little studied. Within a perfect-model context, the present work examines the error growth behavior under such a hybrid spectrum in Lorenz’s original model of 1969, and in a series of identical-twin perturbation experiments using an idealized two-dimensional barotropic turbulence model at a range of resolutions. With the typical resolution of today’s global NWP ensembles, error growth remains largely uniform across scales. The theoretically expected fast error growth characteristic of a k−5/3 spectrum is seen to be largely suppressed in the first decade of the mesoscale range by the synoptic-scale k−3 range. However, it emerges once models become fully able to resolve features on something like a 20-km scale, which corresponds to a grid resolution on the order of a few kilometers.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tsz Yan Leung, t.leung@reading.ac.uk
Save