• Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236257, https://doi.org/10.1175/JAS-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 11691200, https://doi.org/10.1175/JAS-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., C. A. Davis, and Y. Kuo, 2018: Effects of low-level flow orientation and vertical shear on the structure and intensity of tropical cyclones. Mon. Wea. Rev., 146, 24472467, https://doi.org/10.1175/MWR-D-17-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, https://doi.org/10.1175/JAS-D-12-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. A. Zhang, and F. D. Marks, 2019: A thermodynamic pathway leading to rapid intensification of tropical cyclones in shear. Geophys. Res. Lett., 46, 92419251, https://doi.org/10.1029/2019GL083667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C., and C. Wu, 2018: The role of WISHE in secondary eyewall formation. J. Atmos. Sci., 75, 38233841, https://doi.org/10.1175/JAS-D-17-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, https://doi.org/10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J., Z. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511530, https://doi.org/10.1175/JAS-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2016: Varied pathways for simulated tropical cyclone rapid intensification. Part II: Vertical motion and cloud populations. Quart. J. Roy. Meteor. Soc., 142, 18321846, https://doi.org/10.1002/qj.2778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034, https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C.-C., and C.-C. Wu, 2018: The sensitivity of tropical cyclone intensification rate based on ensemble method. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 269, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339440.html.

  • Hu, C.-C., and C.-C. Wu, 2020: Ensemble sensitivity analysis of tropical cyclone intensification rate during the development stage. J. Atmos. Sci., 77, 33873405, https://doi.org/10.1175/JAS-D-19-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, K., Y. Ishikawa, Y. Miyamoto, and T. Awaji, 2011: Short-time-scale processes in a mature hurricane as a response to sea surface fluctuations. J. Atmos. Sci., 68, 22502272, https://doi.org/10.1175/JAS-D-10-05022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2016: Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Wea. Rev., 144, 43954420, https://doi.org/10.1175/MWR-D-15-0413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juračić, A., and D. J. Raymond, 2016: The effects of moist entropy and moisture budgets on tropical cyclone development. J. Geophys. Res. Atmos., 121, 94589473, https://doi.org/10.1002/2016JD025065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and et al. , 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, J. I., 2007: Putting the brakes on the hurricane heat engine. Phys. Today, 60, 13, https://doi.org/10.1063/1.2761784.

  • Leroux, M., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144, 11791202, https://doi.org/10.1175/MWR-D-15-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and Y. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 27822805, https://doi.org/10.1175/MWR-D-11-00237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., D. Tao, K. Zhao, M. Minamide, and F. Zhang, 2018: Dynamics and predictability of the rapid intensification of super Typhoon Usagi (2013). J. Geophys. Res. Atmos., 123, 74627481, https://doi.org/10.1029/2018JD028561.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F., and R. A. Houze, 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317, https://doi.org/10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, https://doi.org/10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, https://doi.org/10.1175/JAS-D-11-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., N. Van Sang, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, https://doi.org/10.1002/qj.459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2015: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst., 7, 92109, https://doi.org/10.1002/2014MS000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., R. Rogers, J. Zawislak, and J. A. Zhang, 2019: Assessing the influence of convective downdrafts and surface enthalpy fluxes on tropical cyclone intensity change in moderate vertical wind shear. Mon. Wea. Rev., 147, 35193534, https://doi.org/10.1175/MWR-D-18-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C.-H., and C.-C. Wu, 2018: The impact of surface heat fluxes outside the inner core on the rapid intensification of Typhoon Soudelor (2015). 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 11C.1, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339444.html.

  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917, https://doi.org/10.1175/1520-0493(1990)118<0891:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, E. T., J. Mielikainen, M. Huang, B. Huang, H. Huang, and T. Lee, 2014: GPU-accelerated longwave radiation scheme of the rapid radiative transfer model for general circulation models (RRTMG). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 36603667, https://doi.org/10.1109/JSTARS.2014.2315771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917925, https://doi.org/10.1063/1.1699784.

  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, https://doi.org/10.1175/2009JAS3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018a: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018b: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part II: Vortex tilt. Mon. Wea. Rev., 146, 38013825, https://doi.org/10.1175/MWR-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., 2009: Upper ocean structure: Response to strong forcing events. Encyclopedia of Ocean Sciences, 2nd ed. J. Steele et al., Eds., Elsevier Press International, 4619–4637.

    • Crossref
    • Export Citation
  • Shen, L.-Z., and C.-C. Wu, 2018: The effect of surface heat fluxes in the outer region of Typhoon Megi (2016). 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 5C.7, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339441.html.

  • Shieh, O. H., M. Fiorino, M. E. Kucas, and B. Wang, 2013: Extreme rapid intensification of Typhoon Vicente (2012) in the South China Sea. Wea. Forecasting, 28, 15781587, https://doi.org/10.1175/WAF-D-13-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459, https://doi.org/10.1175/2008JAS2597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778, https://doi.org/10.1175/2010JAS3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, https://doi.org/10.1175/2011JAS3648.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a hurricane weather research and forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 293308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, B. Jaimes, and L. K. Shay, 2018: Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Mon. Wea. Rev., 146, 35453565, https://doi.org/10.1175/MWR-D-18-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262, https://doi.org/10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, https://doi.org/10.1175/JAS4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere–ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153167, https://doi.org/10.1002/2015JD024198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L15706, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 20112019, https://doi.org/10.1175/JAS-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and R. F. Rogers, 2019: Effects of parameterized boundary layer structure on hurricane rapid intensification in shear. Mon. Wea. Rev., 147, 853871, https://doi.org/10.1175/MWR-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, and V. Tallapragada, 2017: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 14131426, https://doi.org/10.1175/MWR-D-16-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 15
Full Text Views 101 101 7
PDF Downloads 123 123 7

The Impact of Outer-Core Surface Heat Fluxes on the Convective Activities and Rapid Intensification of Tropical Cyclones

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions
Restricted access

Abstract

The rapid intensification (RI) of Typhoon Soudelor (2015) is simulated using a full-physics model. To investigate how the outer-core surface heat fluxes affect tropical cyclone (TC) structure and RI processes, a series of numerical experiments are performed by suppressing surface heat fluxes between various radii. It is found that a TC would become quite weaker when the surface heat fluxes are suppressed outside the radius of 60 or 90 km [the radius of maximum surface wind in the control experiment (CTRL) at the onset of RI is roughly 60 km]. However, interestingly, the TC would experience stronger RI when the surface heat fluxes are suppressed outside the radius of 150 km. For those sensitivity experiments with capped surface heat fluxes, the members with greater intensification rate show stronger inner-core mid- to upper-level updrafts and higher heating efficiency prior to the RI periods. Although the outer-core surface heat fluxes in these members are suppressed, the inner-core winds become stronger, extracting more ocean energy from the inner core. Greater outer-core low-level stability in these members results in aggregation of deep convection and subsequent generation and concentration of potential vorticity inside the inner core, thus confining the strongest winds therein. The abovementioned findings are also supported by partial-correlation analyses, which reveal the positive correlation between the inner-core convection and subsequent 6-h intensity change, and the competition between the inner-core and outer-core convections (i.e., eyewall and outer rainbands).

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw

Abstract

The rapid intensification (RI) of Typhoon Soudelor (2015) is simulated using a full-physics model. To investigate how the outer-core surface heat fluxes affect tropical cyclone (TC) structure and RI processes, a series of numerical experiments are performed by suppressing surface heat fluxes between various radii. It is found that a TC would become quite weaker when the surface heat fluxes are suppressed outside the radius of 60 or 90 km [the radius of maximum surface wind in the control experiment (CTRL) at the onset of RI is roughly 60 km]. However, interestingly, the TC would experience stronger RI when the surface heat fluxes are suppressed outside the radius of 150 km. For those sensitivity experiments with capped surface heat fluxes, the members with greater intensification rate show stronger inner-core mid- to upper-level updrafts and higher heating efficiency prior to the RI periods. Although the outer-core surface heat fluxes in these members are suppressed, the inner-core winds become stronger, extracting more ocean energy from the inner core. Greater outer-core low-level stability in these members results in aggregation of deep convection and subsequent generation and concentration of potential vorticity inside the inner core, thus confining the strongest winds therein. The abovementioned findings are also supported by partial-correlation analyses, which reveal the positive correlation between the inner-core convection and subsequent 6-h intensity change, and the competition between the inner-core and outer-core convections (i.e., eyewall and outer rainbands).

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw
Save