• Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bekker, A., H. Holland, P.-L. Wang, D. Rumble III, H. Stein, J. Hannah, L. Coetzee, and N. Beukes, 2004: Dating the rise of atmospheric oxygen. Nature, 427, 117120, https://doi.org/10.1038/nature02260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, https://doi.org/10.1175/2008JAS2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 76037612, https://doi.org/10.1029/92JD00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., M. Bitz, C. Hunke, H. Lipscomb, M. Holland, L. Schramm, and E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech. Note NCAR/TN-463+STR, 78 pp., http://doi.org/10.5065/D6HH6H1P.

    • Crossref
    • Export Citation
  • Charnay, B., F. Forget, R. Wordsworth, J. Leconte, E. Millour, F. Codron, and A. Spiga, 2013: Exploring the faint young sun problem and the possible climates of the Archean Earth with a 3-D GCM. J. Geophys. Res. Atmos., 118, 10 41410 431, https://doi.org/10.1002/jgrd.50808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Kaspi, 2017: Dynamics of massive atmospheres. Astrophys. J., 845, 1, https://doi.org/10.3847/1538-4357/aa7742.

  • Chemke, R., Y. Kaspi, and I. Halevy, 2016: The thermodynamic effect of atmospheric mass on early Earth’s temperature. Geophys. Res. Lett., 43, 11 41411 422, https://doi.org/10.1002/2016GL071279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp., https://doi.org/10.5065/D63N21CH.

    • Crossref
    • Export Citation
  • Collins, W. D., and et al. , 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, https://doi.org/10.1175/JCLI3760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., D. D. Lucas, J. Tannahill, X. Garaizar, and R. Klein, 2013: Efficient screening of climate model sensitivity to a large number of perturbed input parameters. J. Adv. Model. Earth Syst., 5, 598610, https://doi.org/10.1002/jame.20040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, https://doi.org/10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, F., and R. T. Pierrehumbert, 2016: Convection in condensible-rich atmospheres. Astrophys. J., 24, 822, https://doi.org/10.3847/0004-637X/822/1/24.

    • Search Google Scholar
    • Export Citation
  • Dütsch, H., 1978: Vertical ozone distribution on a global scale. Pure Appl. Geophys., 116, 511529, https://doi.org/10.1007/bf01636904.

  • Eichelberger, S. J., and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, https://doi.org/10.1175/JCLI4279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., 2005: Studies of the general circulation of the atmosphere with a simplified moist general circulation model. Ph.D. thesis, Princeton University, 228 pp.

  • Frierson, D. M., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, https://doi.org/10.1029/2007GL031115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldblatt, C., M. W. Claire, T. M. Lenton, A. J. Matthews, A. J. Watson, and K. J. Zahnle, 2009: Nitrogen-enhanced greenhouse warming on early Earth. Nat. Geosci., 2, 891896, https://doi.org/10.1038/ngeo692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and T. Andrews, 2016: Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett., 43, 39113920, https://doi.org/10.1002/2016GL068406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Global Physical Climatology. Vol. 103. Newnes, 498 pp.

  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497, https://doi.org/10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. 2000 Woods Hole Oceanographic Institute Geophysical Fluid Dynamics Program, Woods Hole, MA, Woods Hole Oceanographic Institution, https://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, https://doi.org/10.1007/s00382-003-0332-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., and G. Hakim, 2012: An Introduction to Dynamic Meteorology. Academic Press, 552 pp.

  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and W. R. Boos, 2017: The physics of orographic elevated heating in radiative–convective equilibrium. J. Atmos. Sci., 74, 29492965, https://doi.org/10.1175/JAS-D-16-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., H. Huang, and C. Zhou, 2018: Widening and weakening of the Hadley circulation under global warming. Sci. Bull., 63, 640644, https://doi.org/10.1016/j.scib.2018.04.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, C. S., M. K. Sen, G. Huerta, Y. Deng, and K. P. Bowman, 2008: Error reduction and convergence in climate prediction. J. Climate, 21, 66986709, https://doi.org/10.1175/2008JCLI2112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., and S. Lee, 2004: The wave–zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61, 10551067, https://doi.org/10.1175/1520-0469(2004)061<1055:TWMFII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and N. Harnik, 2016: Wave and jet maintenance in different flow regimes. J. Atmos. Sci., 73, 24652484, https://doi.org/10.1175/JAS-D-15-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lammer, H., and S. Bauer, 1991: Nonthermal atmospheric escape from Mars and Titan. J. Geophys. Res. Space Phys., 96, 18191825, https://doi.org/10.1029/90JA01676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and H. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 14901503, https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber, 2008: Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA, 105, 17861793, https://doi.org/10.1073/pnas.0705414105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and J. J. Wettstein, 2012: Thermally driven and eddy-driven jet variability in reanalysis. J. Climate, 25, 15871596, https://doi.org/10.1175/JCLI-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., and K. A. Emanuel, 1999: Temperature profiles in radiative-convective equilibrium above surfaces at different heights. J. Geophys. Res., 104, 24 26524 271, https://doi.org/10.1029/1999JD900485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29, 1761, https://doi.org/10.1029/2002GL015535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., Y. Xia, S. Hu, W. Yuan, J. Yang, and D. Ma, 2019: Similarity among atmospheric thermal stratifications over elevated surfaces under radiative-convective equilibrium. Geophys. Res. Lett., 46, 35123522, https://doi.org/10.1029/2018GL081867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Rourke, A. K., and G. K. Vallis, 2013: Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies. J. Atmos. Sci., 70, 26142628, https://doi.org/10.1175/JAS-D-12-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 674 pp.

  • Ramanathan, V., and P. Downey, 1986: A nonisothermal emissivity and absorptivity formulation for water vapor. J. Geophys. Res., 91, 86498666, https://doi.org/10.1029/JD091iD08p08649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagan, C., and G. Mullen, 1972: Earth and Mars: Evolution of atmospheres and surface temperatures. Science, 177, 5256, https://doi.org/10.1126/science.177.4043.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., 2011: A multimodel study of parametric uncertainty in predictions of climate response to rising greenhouse gas concentrations. J. Climate, 24, 13621377, https://doi.org/10.1175/2010JCLI3498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, S., 2013: Exoplanet habitability. Science, 340, 577581, https://doi.org/10.1126/science.1232226.

  • Som, S. M., R. Buick, J. W. Hagadorn, T. S. Blake, J. M. Perreault, J. P. Harnmeijer, and D. C. Catling, 2016: Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci., 9, 448451, https://doi.org/10.1038/ngeo2713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757, https://doi.org/10.1175/JAS3571.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, S. I., and G. K. Vallis, 2019: The effects of gravity on the climate and circulation of a terrestrial planet. Quart. J. Roy. Meteor. Soc., 145, 26272640, https://doi.org/10.1002/qj.3582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, E., and O. Toon, 2013: Hospitable Archean climates simulated by a general circulation model. Astrobiology, 13, 656673, https://doi.org/10.1089/ast.2012.0936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, E., and O. Toon, 2014: Controls on the Archean climate system investigated with a global climate model. Astrobiology, 14, 241253, https://doi.org/10.1089/ast.2013.1112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuval, J., H. Afargan, and Y. Kaspi, 2018: The relation between the seasonal changes in jet characteristics and the Pacific midwinter minimum in eddy activity. Geophys. Res. Lett., 45, 999510 002, https://doi.org/10.1029/2018GL078678.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 366 367 13
Full Text Views 35 35 3
PDF Downloads 28 28 1

Possible Dependence of Climate on Atmospheric Mass: A Convection–Circulation–Cloud Coupled Feedback

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
© Get Permissions
Restricted access

Abstract

The total mass of the atmosphere [or equivalently, the background surface pressure (SP)] may have varied significantly over the evolutionary histories of Earth and other planets. Atmospheric mass can affect climate by modifying physical processes, including shortwave scattering, the emissivity of greenhouse gases, the atmospheric heat capacity, and surface fluxes. We apply a three-dimensional global climate model to explore the dependence of climate on SP over the range of 0.5–2.5 bar. Our simulations show an intriguing, nonmonotonic dependence of climate on SP. Over the SP range of 0.5–0.9 and 1.5–2.5 bar, the surface temperature increases with SP; however, over the SP range of 0.9–1.5 bar, the surface temperature decreases with SP. The negative correlation is due to a convection–circulation–cloud coupled feedback. As SP increases, the moist adiabatic lapse rate increases, leading to upper-troposphere cold anomalies in the tropics and middle latitudes that increase the midlatitude baroclinicity and eddy activity. In association with these changes, the eddy-driven jet is strengthened and shifts equatorward, and two separate westerly jets merge into a single jet. These abrupt circulation changes result in an equatorward shift of the midlatitude cloud belt and reduction of polar clouds, which induce strong negative cloud radiative forcing that cools the climate. Our results demonstrate that the regime transition of flow state (e.g., the merge of jets here) may induce large anomalies in clouds and radiative forcing, resulting in nonlinear climate responses.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0022.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ji Nie, jinie@pku.edu.cn

Abstract

The total mass of the atmosphere [or equivalently, the background surface pressure (SP)] may have varied significantly over the evolutionary histories of Earth and other planets. Atmospheric mass can affect climate by modifying physical processes, including shortwave scattering, the emissivity of greenhouse gases, the atmospheric heat capacity, and surface fluxes. We apply a three-dimensional global climate model to explore the dependence of climate on SP over the range of 0.5–2.5 bar. Our simulations show an intriguing, nonmonotonic dependence of climate on SP. Over the SP range of 0.5–0.9 and 1.5–2.5 bar, the surface temperature increases with SP; however, over the SP range of 0.9–1.5 bar, the surface temperature decreases with SP. The negative correlation is due to a convection–circulation–cloud coupled feedback. As SP increases, the moist adiabatic lapse rate increases, leading to upper-troposphere cold anomalies in the tropics and middle latitudes that increase the midlatitude baroclinicity and eddy activity. In association with these changes, the eddy-driven jet is strengthened and shifts equatorward, and two separate westerly jets merge into a single jet. These abrupt circulation changes result in an equatorward shift of the midlatitude cloud belt and reduction of polar clouds, which induce strong negative cloud radiative forcing that cools the climate. Our results demonstrate that the regime transition of flow state (e.g., the merge of jets here) may induce large anomalies in clouds and radiative forcing, resulting in nonlinear climate responses.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0022.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ji Nie, jinie@pku.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.15 MB)
Save