• Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209248, https://doi.org/10.1017/S0022112068000133.

  • Bluestein, H. B., and D. B. Parsons, 2016: RaXPol Radar Data, cfRadial format, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6VD6WV2.

    • Crossref
    • Export Citation
  • Bluestein, H. B., J. B. Houser, M. M. French, J. C. Snyder, G. D. Emmitt, I. PopStefanija, C. Baldi, and R. T. Bluth, 2014: Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed Doppler lidar and radar. J. Atmos. Oceanic Technol., 31, 302325, https://doi.org/10.1175/JTECH-D-13-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2014a: The optimal state for gravity currents in shear. J. Atmos. Sci., 71, 448468, https://doi.org/10.1175/JAS-D-13-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2014b: Gravity currents in confined channels with environmental shear. J. Atmos. Sci., 71, 11211142, https://doi.org/10.1175/JAS-D-13-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., 1995: Numerical simulations of gravity currents in uniform shear flows. Mon. Wea. Rev., 123, 32403253, https://doi.org/10.1175/1520-0493(1995)123<3240:NSOGCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R., 2016: FP3 Ellis, KS radiosonde data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6GM85DZ.

    • Crossref
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and P. Markowski, 2013: Lifting of ambient air by density currents in sheared environments. J. Atmos. Sci., 70, 12041215, https://doi.org/10.1175/JAS-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 23812403, https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., R. Damiani, and S. Haimov, 2006: Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon. Wea. Rev., 134, 251271, https://doi.org/10.1175/MWR3056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night (PECAN) field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. ven den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., R. H. Johnson, and S. N. Tulich, 2001: Some simple simulations of thunderstorm outflows. J. Atmos. Sci., 58, 504516, https://doi.org/10.1175/1520-0469(2001)058<0504:SSSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., J. W. Wilson, T. M. Weckwerth, S. M. Ellis, M. Dixon, and E. Loew, 2018: S-Pol’s polarimetric data reveal detailed storm features (and insect behavior). Bull. Amer. Meteor. Soc., 99, 20452060, https://doi.org/10.1175/BAMS-D-17-0317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutson, A., C. Wiess, and G. Bryan, 2019: Using the translation speed and vertical structure of gust fronts to infer buoyancy deficits within thunderstorm outflow. Mon. Wea. Rev., 147, 35753594, https://doi.org/10.1175/MWR-D-18-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. W. Moncrieff, 2015: Long-lived mesoscale systems in a low–convective inhibition environment. Part I: Upshear propagation. J. Atmos. Sci., 72, 42974318, https://doi.org/10.1175/JAS-D-15-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2000: Simulated density currents in idealized stratified environments. Mon. Wea. Rev., 128, 14201437, https://doi.org/10.1175/1520-0493(2000)128<1420:SDCIIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 14741492, https://doi.org/10.1175/1520-0493(1988)116<1474:GFCATK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martner, B. E., 1997: Vertical velocities in a thunderstorm gust front and outflow. J. Appl. Meteor., 36, 615622, https://doi.org/10.1175/1520-0450(1997)036<0615:VVIATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and J. B. Hovermale, 1977: A numerical investigation of the severe thunderstorm gust front. Mon. Wea. Rev., 105, 657675, https://doi.org/10.1175/1520-0493(1977)105<0657:ANIOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 24552464, https://doi.org/10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 18791898, https://doi.org/10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mean, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetris (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and et al. , 2016: T-WOLF (Truck-Mounted Wind Observing Lidar Facility) data, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6HQ3X8Q.

    • Crossref
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seitter, K. L., 1986: A numerical study of atmospheric density current motion including the effects of condensation. J. Atmos. Sci., 43, 30683076, https://doi.org/10.1175/1520-0469(1986)043<3068:ANSOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., 1992: A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents. J. Atmos. Sci., 49, 22932305, https://doi.org/10.1175/1520-0469(1992)049<2293:AHMOSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1984: Meteorological tower measurements of a surface cold front. Mon. Wea. Rev., 112, 16341639, https://doi.org/10.1175/1520-0493(1984)112<1634:MTMOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2012: Simulated density currents beneath embedded stratified layers. J. Atmos. Sci., 69, 21922200, https://doi.org/10.1175/JAS-D-11-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. J. Reeder, 1988: On the movement and low-level structure of cold fronts. Mon. Wea. Rev., 116, 19271944, https://doi.org/10.1175/1520-0493(1988)116<1927:OTMALL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soler, M. R., M. Udina, and E. Ferreres, 2014: Observational and numerical simulation study of a sequence of eight atmospheric density currents in northern Spain. Bound.-Layer Meteor., 153, 195216, https://doi.org/10.1007/s10546-014-9942-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Wilhelmson, J. L. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, https://doi.org/10.1002/fld.1650170103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 2016a: FP3 FP4 FP5 QC 5 min surface data, tile corrected, version 1.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6BZ645V.

    • Crossref
    • Export Citation
  • UCAR/NCAR–Earth Observing Laboratory, 2016b: S-Pol radar moments data in cfRadial format, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6PN93VJ.

    • Crossref
    • Export Citation
  • Wagner, T. J., D. Turner, and R. Newsom, 2016a: MP3 University of Wisconsin SPARC Doppler lidar zenith pointing data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6QJ7FJ5.

    • Crossref
    • Export Citation
  • Wagner, T. J., E. Olson, N. Smith, and W. Feltz, 2016b: Mobile PISA 3 UW/SSEC SPARC radiosonde data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6VH5M7B.

    • Crossref
    • Export Citation
  • Wagner, T. J., P. M. Klein, and D. D. Turner, 2019: A new generation of ground-based mobile platforms for active and passive profiling of the boundary layer. Bull. Amer. Meteor. Soc., 100, 137153, https://doi.org/10.1175/BAMS-D-17-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187, https://doi.org/10.1175/1520-0493(1992)120<2169:TIAOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B. L., and K. R. Helfrich, 2008: Gravity currents and internal waves in a stratified fluid. J. Fluid Mech., 616, 327356, https://doi.org/10.1017/S0022112008003984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 15071525, https://doi.org/10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 1992: Density currents in shear flows—A two-fluid model. J. Atmos. Sci., 49, 511524, https://doi.org/10.1175/1520-0469(1992)049<0511:DCISFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., M. Coniglio, M. Parker, and R. S. Schumacher, 2016: CSU/NCSU/NSSL MGAUS radiosonde data, version 3.0. UCAR/NCAR–Earth Observing Laboratory, accessed 29 August 2018, https://doi.org/10.5065/D6W66HXN.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 93 93 11
Full Text Views 35 35 2
PDF Downloads 48 48 1

Estimating the Maximum Vertical Velocity at the Leading Edge of a Density Current

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 3 School of Meteorology, University of Oklahoma, and Cooperative Institute for Mesoscale Meteorological Studies, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

The maximum upward vertical velocity at the leading edge of a density current is commonly <10 m s−1. Studies of the vertical velocity, however, are relatively few, in part owing to the dearth of high-spatiotemporal-resolution observations. During the Plains Elevated Convection At Night (PECAN) field project, a mobile Doppler lidar measured a maximum vertical velocity of 13 m s−1 at the leading edge of a density current created by a mesoscale convective system during the night of 15 July 2015. Two other vertically pointing instruments recorded 8 m s−1 vertical velocities at the leading edge of the density current on the same night. This study describes the structure of the density current and attempts to estimate the maximum vertical velocity at their leading edges using the following properties: the density current depth, the slope of its head, and its perturbation potential temperature. The method is then be applied to estimate the maximum vertical velocity at the leading edge of density currents using idealized numerical simulations conducted in neutral and stable atmospheres with resting base states and in neutral and stable atmospheres with vertical wind shear. After testing this method on idealized simulations, this method is then used to estimate the vertical velocity at the leading edge of density currents documented in several previous studies. It was found that the maximum vertical velocity can be estimated to within 10%–15% of the observed or simulated maximum vertical velocity and indirectly accounts for parameters including environmental wind shear and static stability.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Dylan W. Reif, dylanreif@ou.edu

Abstract

The maximum upward vertical velocity at the leading edge of a density current is commonly <10 m s−1. Studies of the vertical velocity, however, are relatively few, in part owing to the dearth of high-spatiotemporal-resolution observations. During the Plains Elevated Convection At Night (PECAN) field project, a mobile Doppler lidar measured a maximum vertical velocity of 13 m s−1 at the leading edge of a density current created by a mesoscale convective system during the night of 15 July 2015. Two other vertically pointing instruments recorded 8 m s−1 vertical velocities at the leading edge of the density current on the same night. This study describes the structure of the density current and attempts to estimate the maximum vertical velocity at their leading edges using the following properties: the density current depth, the slope of its head, and its perturbation potential temperature. The method is then be applied to estimate the maximum vertical velocity at the leading edge of density currents using idealized numerical simulations conducted in neutral and stable atmospheres with resting base states and in neutral and stable atmospheres with vertical wind shear. After testing this method on idealized simulations, this method is then used to estimate the vertical velocity at the leading edge of density currents documented in several previous studies. It was found that the maximum vertical velocity can be estimated to within 10%–15% of the observed or simulated maximum vertical velocity and indirectly accounts for parameters including environmental wind shear and static stability.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Dylan W. Reif, dylanreif@ou.edu
Save