• Barber, K. A., G. L. Mullendore, and M. J. Alexander, 2018: Out-of-cloud convective turbulence: Estimation method and impacts of model resolution. J. Appl. Meteor. Climatol., 57, 121136, https://doi.org/10.1175/JAMC-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1971: Structure of the atmosphere in the vicinity of large-amplitude Kelvin–Helmholtz billows. Quart. J. Roy. Meteor. Soc., 97, 283299, https://doi.org/10.1002/qj.49709741304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502518, https://doi.org/10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., T. Gerz, and U. Schumann, 1995: Turbulent breaking of overturning gravity waves below a critical level. Appl. Sci. Res., 54, 163176, https://doi.org/10.1007/BF00849114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grummann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and D. L. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165, https://doi.org/10.1175/1520-0434(1992)007<0150:AOCATF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., J. A. Knox, P. F. Lester, and L. J. Ehernberger, 2015: Clear air turbulence. Encyclopedia of Atmospheric Science, 2nd ed. G. R. North, J. Pyle, and F. Zhang, Eds., Academic Press, 177–186.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fovell, R. G., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively-generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamic instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277, https://doi.org/10.1029/RS020i006p01247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009a: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 11261148, https://doi.org/10.1175/2008JAS2726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., L. Wang, J. Werne, T. Lund, and K. Wan, 2009b: Gravity wave instability dynamics at high Reynolds numbers. Part II: Turbulence evolution, structure and anisotropy. J. Atmos. Sci., 66, 11491171, https://doi.org/10.1175/2008JAS2727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2010: Vertically pointing airborne Doppler radar observations of Kelvin–Helmholtz billows. Mon. Wea. Rev., 138, 982986, https://doi.org/10.1175/2009MWR3212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grasmick, C., and B. Geerts, 2020: Detailed dual-Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part I: Dynamic structure. J. Atmos. Sci., 77, 17611782, https://doi.org/10.1175/JAS-D-19-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, R. H., 1977: Forecasting techniques of clear-air turbulence including that associated with mountain waves. WMO Tech. Note 155, 31 pp.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Kennedy, P. J., and M. A. Shapiro, 1980: Further encounters with clear-air turbulence in research aircraft. J. Atmos. Sci., 37, 986993, https://doi.org/10.1175/1520-0469(1980)037<0986:FEWCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, https://doi.org/10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 23812403, https://doi.org/10.1175/2010JAMC2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2012: A numerical investigation of convectively induced turbulence above deep convection. J. Appl. Meteor. Climatol., 51, 11801200, https://doi.org/10.1175/JAMC-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., H.-Y. Chun, R. D. Sharman, and S. B. Trier, 2014: The role of vertical shear on aviation turbulence within cirrus bands of a simulated western Pacific cyclone. Mon. Wea. Rev., 142, 27942813, https://doi.org/10.1175/MWR-D-14-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, https://doi.org/10.1175/2008MWR2596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klostermeyer, J., and R. Rüster, 1980: Radar observation and model computation of jet stream-generated Kelvin-Helmholtz instability. J. Geophys. Res., 85, 28412846, https://doi.org/10.1029/JC085iC05p02841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, J. A., A. W. Black, J. A. Rackley, E. N. Wilson, J. S. Grant, S. P. Phelps, D. S. Nevius, and C. B. Dunn, 2016: Automated turbulence forecasting strategies. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer, 243–260.

    • Crossref
    • Export Citation
  • Koch, S. E., and P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 25702592, https://doi.org/10.1175/1520-0493(1988)116<2570:AMGWEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908, https://doi.org/10.1175/JAS3574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and J. C. Knievel, 2005: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. J. Atmos. Sci., 62, 34083419, https://doi.org/10.1175/JAS3513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 27772796, https://doi.org/10.1175/2008JAMC1787.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2014: Intensity of thunderstorm-generated turbulence as revealed by large-eddy simulation. Geophys. Res. Lett., 41, 22212227, https://doi.org/10.1002/2014GL059299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H. M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, https://doi.org/10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2004: Observations and numerical simulations of intertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61, 26922706, https://doi.org/10.1175/JAS3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, https://doi.org/10.1175/BAMS-D-11-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1967: Characteristics of billow clouds and their relation to clear-air turbulence. Quart. J. Roy. Meteor. Soc., 93, 419435, https://doi.org/10.1002/qj.49709339803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mancuso, R. L., and R. M. Endlich, 1966: Clear air turbulence frequency as a function of wind shear and deformation. Mon. Wea. Rev., 94, 581585, https://doi.org/10.1175/1520-0493(1966)094<0581:CATFAA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J., 1986: Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids, 29, 34703471, https://doi.org/10.1063/1.865812.

  • Miles, J., and L. Howard, 1964: Note on heterogeneous shear flow. J. Fluid Mech., 20, 331336, https://doi.org/10.1017/S0022112064001252.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., R. D. Sharman, and S. B. Trier, 2020: On the consequences of PBL scheme diffusion on UTLS wave and turbulence representation in high-resolution NWP models. Mon. Wea. Rev., 148, 42474265, https://doi.org/10.1175/MWR-D-20-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. Academic Press, 276 pp.

  • Plougonven, R., and F. Zhang, 2016: Gravity waves generated by jets and fronts and their relevance for clear-air turbulence. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer, 385–406.

    • Crossref
    • Export Citation
  • Scorer, R. S., 1969: Billow mechanics. Radio Sci., 4, 12991308, https://doi.org/10.1029/RS004i012p01299.

  • Shapiro, M. A., 1978: Further evidence of the mesoscale turbulent structure of upper-level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 11001111, https://doi.org/10.1175/1520-0493(1978)106<1100:FEOTMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., 2016: Nature of aviation turbulence. Aviation Turbulence: Processes, Detection, Prediction, R. Sharman and T. Lane, Eds., Springer, 3–30.

    • Crossref
    • Export Citation
  • Sharman, R., and J. Pearson, 2017: Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting non-convective turbulence. J. Appl. Meteor. Climatol., 56, 317337, https://doi.org/10.1175/JAMC-D-16-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., and S. B. Trier, 2019: Influences of gravity waves on convectively-induced turbulence (CIT): A review. Pure Appl. Geophys., 176, 19231958, https://doi.org/10.1007/s00024-018-1849-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 14161432, https://doi.org/10.1175/JAMC-D-13-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. S. Weygandt, T. Smirnova, and B. E. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1, http://ams.confex.com/ams/pdfpapers/142055.pdf.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2016: Mechanisms influencing cirrus banding and aviation turbulence near a convectively enhanced upper-level jet stream. Mon. Wea. Rev., 144, 30033027, https://doi.org/10.1175/MWR-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and R. D. Sharman, 2018: Trapped gravity waves and their association with turbulence in a large thunderstorm anvil during PECAN. Mon. Wea. Rev., 146, 30313052, https://doi.org/10.1175/MWR-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci., 67, 29902999, https://doi.org/10.1175/2010JAS3531.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 24772496, https://doi.org/10.1175/MWR-D-11-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721729, https://doi.org/10.1175/1520-0493(1987)115<0721:TSSAPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2017: Increased light, moderate, and severe clear-air turbulence in response to climate change. Adv. Atmos. Sci., 34, 576586, https://doi.org/10.1007/s00376-017-6268-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wroblewski, D. E., O. R. Coté, J. M. Hacker, and R. J. Dobosy, 2007: Cliff–Ramp patterns and Kelvin–Helmholtz billows in stably stratified shear flow in the upper troposphere: Analysis of aircraft measurements. J. Atmos. Sci., 64, 25212539, https://doi.org/10.1175/JAS3956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440457, https://doi.org/10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zovko-Rajak, D., and T. P. Lane, 2014: The generation of near-cloud turbulence in idealized simulations. J. Atmos. Sci., 71, 24302451, https://doi.org/10.1175/JAS-D-13-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zovko-Rajak, D., T. P. Lane, R. D. Sharman, and S. B. Trier, 2019: The role of gravity wave breaking in a case of upper-level near-cloud turbulence. Mon. Wea. Rev., 147, 45674588, https://doi.org/10.1175/MWR-D-18-0445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 163 163 23
Full Text Views 52 52 8
PDF Downloads 64 64 14

Environment and Mechanisms of Severe Turbulence in a Midlatitude Cyclone

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 School of Earth Sciences, and ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

A large midlatitude cyclone occurred over the central United States from 0000 to 1800 UTC 30 April 2017. During this period, there were more than 1100 reports of moderate-or-greater turbulence at commercial aviation cruising altitudes east of the Rocky Mountains. Much of this turbulence was located above or, otherwise, outside the synoptic-scale cloud shield of the cyclone, thus complicating its avoidance. In this study we use two-way nesting in a numerical model with finest horizontal spacing of 370 m to investigate possible mechanisms producing turbulence in two distinct regions of the cyclone. In both regions, model-parameterized turbulence kinetic energy compares well to observed turbulence reports. Despite being outside of hazardous large radar reflectivity locations in deep convection, both regions experienced strong modification of the turbulence environment as a result of upper-tropospheric/lower-stratospheric (UTLS) convective outflow. For one region, where turbulence was isolated and short lived, simulations revealed breaking of ~100-km horizontal-wavelength lower-stratospheric gravity waves in the exit region of a UTLS jet streak as the most likely mechanism for the observed turbulence. Although similar waves occurred in a simulation without convection, the altitude at which wave breaking occurred in the control simulation was strongly affected by UTLS outflow from distant deep convection. In the other analyzed region, turbulence was more persistent and widespread. There, overturning waves of much shorter 5–10-km horizontal wavelengths occurred within layers of gradient Richardson number < 0.25, which promoted Kelvin–Helmholtz instability associated with strong vertical shear in different horizontal locations both above and beneath the convectively enhanced UTLS jet.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stanley B. Trier, trier@ucar.edu

Abstract

A large midlatitude cyclone occurred over the central United States from 0000 to 1800 UTC 30 April 2017. During this period, there were more than 1100 reports of moderate-or-greater turbulence at commercial aviation cruising altitudes east of the Rocky Mountains. Much of this turbulence was located above or, otherwise, outside the synoptic-scale cloud shield of the cyclone, thus complicating its avoidance. In this study we use two-way nesting in a numerical model with finest horizontal spacing of 370 m to investigate possible mechanisms producing turbulence in two distinct regions of the cyclone. In both regions, model-parameterized turbulence kinetic energy compares well to observed turbulence reports. Despite being outside of hazardous large radar reflectivity locations in deep convection, both regions experienced strong modification of the turbulence environment as a result of upper-tropospheric/lower-stratospheric (UTLS) convective outflow. For one region, where turbulence was isolated and short lived, simulations revealed breaking of ~100-km horizontal-wavelength lower-stratospheric gravity waves in the exit region of a UTLS jet streak as the most likely mechanism for the observed turbulence. Although similar waves occurred in a simulation without convection, the altitude at which wave breaking occurred in the control simulation was strongly affected by UTLS outflow from distant deep convection. In the other analyzed region, turbulence was more persistent and widespread. There, overturning waves of much shorter 5–10-km horizontal wavelengths occurred within layers of gradient Richardson number < 0.25, which promoted Kelvin–Helmholtz instability associated with strong vertical shear in different horizontal locations both above and beneath the convectively enhanced UTLS jet.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stanley B. Trier, trier@ucar.edu
Save