• Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz, 2004: Numerical simulation of cloud–clear air interfacial mixing. J. Atmos. Sci., 61, 17261739, https://doi.org/10.1175/1520-0469(2004)061<1726:NSOCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., J. M. Reisner, B. Henson, M. K. Dubey, and C. A. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, J. Reisner, and A. Gadian, 2010: Cloud-aerosol interactions for boundary-layer stratocumulus in the Lagrangian cloud model. J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabas, S., and S. Shima, 2013: Large-eddy simulations of trade wind cumuli using particle-based microphysics with Monte Carlo coalescence. J. Atmos. Sci., 70, 27682777, https://doi.org/10.1175/JAS-D-12-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabas, S., A. Jaruga, H. Pawlowska, and W. W. Grabowski, 2015: Libcloudph11 0.2: Single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++. Geosci. Model Dev., 8, 16771707, https://doi.org/10.5194/gmd-8-1677-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., and J. Latham, 1985: An airborne study of vertical structure and microphysical variability within a small cumulus. Quart. J. Roy. Meteor. Soc., 111, 773792, https://doi.org/10.1002/qj.49711146907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136, https://doi.org/10.1175/1520-0469(1993)050<0120:CEACDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and L. Chaumat, 2001: Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores. J. Atmos. Sci., 58, 628641, https://doi.org/10.1175/1520-0469(2001)058<0628:DSBICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnet, F., and J.-L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, https://doi.org/10.1175/JAS3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55, 34173432, https://doi.org/10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: On modelling nucleation and condensation theory in Eulerian spatial domain. J. Atmos. Sci., 31, 20992117, https://doi.org/10.1175/1520-0469(1974)031<2099:OMNACT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damiani, R., G. Vali, and S. Haimov, 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 14321450, https://doi.org/10.1175/JAS3701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106, https://doi.org/10.2151/jmsj.86A.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 44934499, https://doi.org/10.1175/JAS-D-14-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464, https://doi.org/10.1175/JAS-D-14-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2019: Separating physical impacts from natural variability using piggybacking technique. Adv. Geosci., 49, 105111, https://doi.org/10.5194/adgeo-49-105-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2020: Comparison of Eulerian bin and Lagrangian particle-based schemes in simulations of Pi Chamber dynamics and microphysics. J. Atmos. Sci., 77, 11511165, https://doi.org/10.1175/JAS-D-19-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546, https://doi.org/10.1175/1520-0469(1991)048<0527:CIIRTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993: Cloud–environment interface instability: Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573, https://doi.org/10.1175/1520-0469(1993)050<0555:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 2002: A multiscale anelastic model for meteorological research. Mon. Wea. Rev., 130, 939956, https://doi.org/10.1175/1520-0493(2002)130<0939:AMAMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and D. Jarecka, 2015: Modeling condensation in shallow nonprecipitating convection. J. Atmos. Sci., 72, 46614679, https://doi.org/10.1175/JAS-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., 73, 37493770, https://doi.org/10.1175/JAS-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2017: Modeling condensation in deep convection. J. Atmos. Sci., 74, 22472267, https://doi.org/10.1175/JAS-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., M. Andrejczuk, and L.-P. Wang, 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301, https://doi.org/10.1016/j.atmosres.2010.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinstein, F. F., L. G. Margolin, and W. J. Rider, 2007: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, 578 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., S. Raasch, and Y. Noh, 2015: Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM–LES approach. Atmos. Res., 156, 4357, https://doi.org/10.1016/j.atmosres.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., T. Yamaguchi, and G. Feingold, 2019: Inhomogeneous mixing in Lagrangian cloud models: Effects on the production of precipitation embryos. J. Atmos. Sci., 76, 113133, https://doi.org/10.1175/JAS-D-18-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., P. H. Austin, M. B. Baker, and A. M. Blyth, 1985: Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. J. Atmos. Sci., 42, 173192, https://doi.org/10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and et al. , 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189, https://doi.org/10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., C.-W. Su, and P. A. McMurtry, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54, 26972712, https://doi.org/10.1175/1520-0469(1997)054<2697:MEAFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, https://doi.org/10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margolin, L. G., and W. J. Rider, 2002: A rationale for implicit turbulence modelling. Int. J. Numer. Methods Fluids, 39, 821841, https://doi.org/10.1002/fld.331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margolin, L. G., W. J. Rider, and F. F. Grinstein, 2006: Modeling turbulent flow with implicit LES. J. Turbul., 7, 127, https://doi.org/10.1080/14685240500331595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matheou, G., D. Chung, L. Nuijens, B. Stevens, and J. Teixeira, 2011: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Mon. Wea. Rev., 139, 29182939, https://doi.org/10.1175/2011MWR3599.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, https://doi.org/10.1175/2007JAS2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., and R. C. Easter, 2009: Nonlinear advection algorithms applied to interrelated tracers: Errors and implications for modeling aerosol–cloud interactions. Mon. Wea. Rev., 137, 632644, https://doi.org/10.1175/2008MWR2626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., and et al. , 2012: Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. J. Geophys. Res., 117, D20205, https://doi.org/10.1029/2011JD016837.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer, 954 pp.

  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, Y., S. Shima, and H. Tomita, 2018: Numerical convergence of shallow convection cloud field simulations: Comparison between double-moment Eulerian and particle-based Lagrangian microphysics coupled to the same dynamical core. J. Adv. Model. Earth Syst., 10, 14951512, https://doi.org/10.1029/2018MS001285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S.-I., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The superdroplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and et al. , 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325362, https://doi.org/10.1016/0021-9991(84)90121-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and T. L. Clark, 1986: The multidimensional positive definite advection transport algorithm. Further development and applications. J. Comput. Phys., 67, 396438, https://doi.org/10.1016/0021-9991(86)90270-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375, https://doi.org/10.1016/0021-9991(90)90105-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sölch, I., and B. Kärcher, 2010: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Quart. J. Roy. Meteor. Soc., 136, 20742093, https://doi.org/10.1002/qj.689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59, 32853301, https://doi.org/10.1175/1520-0469(2002)059<3285:EODSAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, C.-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158, https://doi.org/10.1016/S0169-8095(98)00039-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, S., M. Ovchinnikov, F. Yang, D. van der Voort, W. Cantrell, S. K. Krueger, and R. A. Shaw, 2019: Scaling of an atmospheric model to simulate turbulence and cloud microphysics in the Pi Chamber. J. Adv. Model. Earth Syst., 11, 19811994, https://doi.org/10.1029/2019MS001670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243249, https://doi.org/10.1007/BF01993560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7, 449457, https://doi.org/10.3402/tellusa.v7i4.8917.

  • Warner, J., 1969: The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059, https://doi.org/10.1175/1520-0469(1969)026<1049:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weil, J. C., P. P. Sullivan, and C. Moeng, 2004: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci., 61, 28772887, https://doi.org/10.1175/JAS-3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 144 144 28
Full Text Views 36 36 4
PDF Downloads 53 53 10

Comparison of Eulerian Bin and Lagrangian Particle-Based Microphysics in Simulations of Nonprecipitating Cumulus

View More View Less
  • 1 Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

A single nonprecipitating cumulus congestus setup is applied to compare droplet spectra grown by the diffusion of water vapor in Eulerian bin and particle-based Lagrangian microphysics schemes. Bin microphysics represent droplet spectral evolution applying the spectral density function. In the Lagrangian microphysics, computational particles referred to as superdroplets are followed in time and space with each superdroplet representing a multiplicity of natural cloud droplets. The same cloud condensation nuclei (CCN) activation and identical representation of the droplet diffusional growth allow the comparison. The piggybacking method is used with the two schemes operating in a single simulation, one scheme driving the dynamics and the other one piggybacking the simulated flow. Piggybacking allows point-by-point comparison of droplet spectra predicted by the two schemes. The results show the impact of inherent limitations of the two microphysics simulation methods, numerical diffusion in the Eulerian scheme and a limited number of superdroplets in the Lagrangian scheme. Numerical diffusion in the Eulerian scheme results in a more dilution of the cloud upper half and thus smaller cloud droplet mean radius. The Lagrangian scheme typically has larger spatial fluctuations of droplet spectral properties. A significantly larger mean spectral width in the bin microphysics across the entire cloud depth is the largest difference between the two schemes. A fourfold increase of the number of superdroplets per grid volume and a twofold increase of the spectral resolution and thus the number of bins have small impact on the results and provide only minor changes to the comparison between simulated cloud properties.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 25 January 2021 to correct the title of the Grabowski (2019) reference.

Corresponding author: Wojciech Grabowski, grabow@ucar.edu

Abstract

A single nonprecipitating cumulus congestus setup is applied to compare droplet spectra grown by the diffusion of water vapor in Eulerian bin and particle-based Lagrangian microphysics schemes. Bin microphysics represent droplet spectral evolution applying the spectral density function. In the Lagrangian microphysics, computational particles referred to as superdroplets are followed in time and space with each superdroplet representing a multiplicity of natural cloud droplets. The same cloud condensation nuclei (CCN) activation and identical representation of the droplet diffusional growth allow the comparison. The piggybacking method is used with the two schemes operating in a single simulation, one scheme driving the dynamics and the other one piggybacking the simulated flow. Piggybacking allows point-by-point comparison of droplet spectra predicted by the two schemes. The results show the impact of inherent limitations of the two microphysics simulation methods, numerical diffusion in the Eulerian scheme and a limited number of superdroplets in the Lagrangian scheme. Numerical diffusion in the Eulerian scheme results in a more dilution of the cloud upper half and thus smaller cloud droplet mean radius. The Lagrangian scheme typically has larger spatial fluctuations of droplet spectral properties. A significantly larger mean spectral width in the bin microphysics across the entire cloud depth is the largest difference between the two schemes. A fourfold increase of the number of superdroplets per grid volume and a twofold increase of the spectral resolution and thus the number of bins have small impact on the results and provide only minor changes to the comparison between simulated cloud properties.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 25 January 2021 to correct the title of the Grabowski (2019) reference.

Corresponding author: Wojciech Grabowski, grabow@ucar.edu
Save