• Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., D. Kim, S. K. Clark, Y. Ming, and K. Inoue, 2019: Scale analysis of moist thermodynamics in a simple model and the relationship between moisture modes and gravity waves. J. Atmos. Sci., 76, 38633881, https://doi.org/10.1175/JAS-D-19-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchert, S., G. Zhou, M. Baldauf, H. Schmidt, G. Zängl, and D. Reinert, 2019: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). Geosci. Model Dev., 12, 35413569, https://doi.org/10.5194/gmd-12-3541-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451460, https://doi.org/10.1175/1520-0469(2003)060<0451:TGMATW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busse, F., 1994: Convection driven zonal flows and vortices in the major planets. Chaos, 4, 123134, https://doi.org/10.1063/1.165999.

  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fruman, M. D., 2009: Equatorially bounded zonally propagating linear waves on a generalized β plane. J. Atmos. Sci., 66, 29372945, https://doi.org/10.1175/2009JAS2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., J. Zimmerman, L. Maas, and H. Van Haren, 2008: Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, RG2004, https://doi.org/10.1029/2006RG000220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, P. A., and G. A. Glatzmaier, 1981: Compressible convection in a rotating spherical shell. I—Anelastic equations. II—A linear anelastic model. III—Analytic model for compressible vorticity waves. Astrophys. J. Suppl. Ser., 45, 335388, https://doi.org/10.1086/190714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glatzmaier, G. A., M. Evonuk, and T. M. Rogers, 2009: Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn., 103, 3151, https://doi.org/10.1080/03091920802221245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, https://doi.org/10.1175/JAS3352.1.

  • Hayashi, M., and H. Itoh, 2012: The importance of the nontraditional Coriolis terms in large-scale motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci., 69, 26992716, https://doi.org/10.1175/JAS-D-11-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heimpel, M., J. Aurnou, and J. Wicht, 2005: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature, 438, 193196, https://doi.org/10.1038/nature04208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. Academic Press, 532 pp.

  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432975, https://doi.org/10.1256/qj.06.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, J.-H., and A. Arakawa, 2008: A three-dimensional anelastic model based on the vorticity equation. Mon. Wea. Rev., 136, 276294, https://doi.org/10.1175/2007MWR2095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 2003: On the nonhydrostatic atmospheric models with inclusion of the horizontal component of the Earth’s angular velocity. J. Meteor. Soc. Japan, 81, 935950, https://doi.org/10.2151/jmsj.81.935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohma, M., and K. Sato, 2013: Kelvin and Rossby waves trapped at boundaries under the full Coriolis force. SOLA, 9, 914, https://doi.org/10.2151/SOLA.2013-003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 21922210, https://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, P., and et al. , 2019: Model hierarchies for understanding atmospheric circulation. Rev. Geophys., 57, 250280, https://doi.org/10.1029/2018RG000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesoscale Atmospheric Processes Branch/Laboratory for Atmospheres/Earth Sciences Division/Science and Exploration Directorate/Goddard Space Flight Center/NASA, and Earth System Science Interdisciplinary Center/University of Maryland, 2018: GPCP Version 1.3 One-Degree Daily Precipitation Data Set. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 10 August 2019, https://doi.org/10.5065/PV8B-HV76.

    • Crossref
    • Export Citation
  • Müller, R., 1989: A note on the relation between the “traditional approximation” and the metric of the primitive equations. Tellus, 41A, 175178, https://doi.org/10.3402/tellusa.v41i2.11832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 1426114290, https://doi.org/10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ong, H., and P. E. Roundy, 2019: Linear effects of nontraditional Coriolis terms on intertropical convergence zone forced large-scale flow. Quart. J. Roy. Meteor. Soc., 145, 24452453, https://doi.org/10.1002/qj.3572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ong, H., and P. E. Roundy, 2020: Nontraditional hypsometric equation. Quart. J. Roy. Meteor. Soc., 146, 700706, https://doi.org/10.1002/qj.3703.

  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, https://doi.org/10.1029/2011MS000099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2012: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 20972106, https://doi.org/10.1175/JAS-D-12-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2020: Interpretation of the spectrum of eastward-moving tropical convective anomalies. Quart. J. Roy. Meteor. Soc., 146, 795806, https://doi.org/10.1002/qj.3709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and M. A. Janiga, 2012: Analysis of vertically propagating convectively coupled equatorial waves using observations and a non-hydrostatic Boussinesq model on the equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 138, 10041017, https://doi.org/10.1002/qj.983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva Dias, P. L., W. H. Schubert, and M. DeMaria, 1983: Large-scale response of the tropical atmosphere to transient convection. J. Atmos. Sci., 40, 26892707, https://doi.org/10.1175/1520-0469(1983)040<2689:LSROTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth, 2014: A proposed baroclinic wave test case for deep-and shallow-atmosphere dynamical cores. Quart. J. Roy. Meteor. Soc., 140, 15901602, https://doi.org/10.1002/qj.2241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 946 pp., https://doi.org/10.1017/9781107588417.

  • Verhoeven, J., and S. Stellmach, 2014: The compressional beta effect: A source of zonal winds in planets? Icarus, 237, 143158, https://doi.org/10.1016/j.icarus.2014.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., 1998: Deep convection in the interior of major planets: A review. Aust. J. Phys., 51, 875889, https://doi.org/10.1071/P97079.

  • Yano, J.-I., and M. Bonazzola, 2009: Scale analysis for large-scale tropical atmospheric dynamics. J. Atmos. Sci., 66, 159172, https://doi.org/10.1175/2008JAS2687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 137 137 15
Full Text Views 19 19 4
PDF Downloads 24 24 5

The Compressional Beta Effect: Analytical Solution, Numerical Benchmark, and Data Analysis

View More View Less
  • 1 Department of Land, Air and Water Resources, University of California, Davis, Davis, California
  • | 2 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

This study derives a complete set of equatorially confined wave solutions from an anelastic equation set with the complete Coriolis terms, which include both the vertical and meridional planetary vorticity. The propagation mechanism can change with the effective static stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of buoyancy as an eastward-propagation mechanism is replaced by the compressional beta effect (i.e., vertical density-weighted advection of the meridional planetary vorticity). For example, the Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are meridional vorticity disturbances that propagate eastward owing to the compressional beta effect. The compressional Rossby wave solutions can serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs) in numerical models; with an effectively neutral condition and initial large-scale disturbances given a half vertical wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a phase speed of 0.24 m s−1. The phase speed increases with the planetary rotation rate and the vertical wavelength and also changes with the density scale height. Besides, the compressional beta effect and the meridional vorticity tendency are reconstructed using reanalysis data and regressed upon tropical precipitation filtered for the Madden–Julian oscillation (MJO). The results suggest that the compressional beta effect contributes 10.8% of the meridional vorticity tendency associated with the MJO in terms of the ratio of the minimum values.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0124.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hing Ong, hxong@ucdavis.edu

Abstract

This study derives a complete set of equatorially confined wave solutions from an anelastic equation set with the complete Coriolis terms, which include both the vertical and meridional planetary vorticity. The propagation mechanism can change with the effective static stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of buoyancy as an eastward-propagation mechanism is replaced by the compressional beta effect (i.e., vertical density-weighted advection of the meridional planetary vorticity). For example, the Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are meridional vorticity disturbances that propagate eastward owing to the compressional beta effect. The compressional Rossby wave solutions can serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs) in numerical models; with an effectively neutral condition and initial large-scale disturbances given a half vertical wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a phase speed of 0.24 m s−1. The phase speed increases with the planetary rotation rate and the vertical wavelength and also changes with the density scale height. Besides, the compressional beta effect and the meridional vorticity tendency are reconstructed using reanalysis data and regressed upon tropical precipitation filtered for the Madden–Julian oscillation (MJO). The results suggest that the compressional beta effect contributes 10.8% of the meridional vorticity tendency associated with the MJO in terms of the ratio of the minimum values.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0124.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hing Ong, hxong@ucdavis.edu

Supplementary Materials

    • Supplemental Materials (ZIP 5.16 MB)
Save