• Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13, 991994, https://doi.org/10.1029/GL013i010p00991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schönhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, https://doi.org/10.1175/2009JTECHA1236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., Y. Wang, and J. Ming, 2012: Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteor., 18, 162171, https://doi.org/10.3969/j.issn.1006-8775.2012.02.006.

    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Wang, and D. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over east China. J. Appl. Meteor. Climatol., 55, 621634, https://doi.org/10.1175/JAMC-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deo, A., and K. J. E. Walsh, 2016: Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmos. Res., 181, 8194, https://doi.org/10.1016/j.atmosres.2016.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 14531476, https://doi.org/10.1175/JAS-D-17-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Y., 2015: Monitoring and forecasting of finescale structure and impact assessment of landfalling typhoons. Diqiu Kexue Jinzhan, 30, 847854.

    • Search Google Scholar
    • Export Citation
  • Duan, Y., and et al. , 2019: Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bull. Amer. Meteor. Soc., 100, ES447ES472, https://doi.org/10.1175/BAMS-D-18-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, https://doi.org/10.1175/JTECH-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 2004: Super-larger raindrops. Geophys. Res. Lett., 31, L13102, https://doi.org/10.1029/2004GL020167.

  • Hosking, J. G., C. D. Stow, and S. G. Bradley, 1985: Corrections for horizontal winds and wind shear in raindrop size spectrometers. J. Atmos. Oceanic Technol., 2, 181189, https://doi.org/10.1175/1520-0426(1985)002<0181:CFHWAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and et al. , 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2012: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climatol., 51, 941953, https://doi.org/10.1175/JAMC-D-11-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: Disdrometer network observations of finescale spatial–temporal clustering in rain. J. Atmos. Sci., 72, 16481666, https://doi.org/10.1175/JAS-D-14-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janapati, J., S. B. Kumar, V. M. Reddy, K. K. Reddy, P.-L. Lin, N. T. Rao, and C.-Y. Liu, 2017: A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India. J. Atmos. Sol.-Terr. Phys., 159, 2340, https://doi.org/10.1016/j.jastp.2017.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M., and et al. , 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-K., and D.-I. Lee, 2017: Raindrop size distribution and vertical velocity characteristics in the rainband of Hurricane Bolaven (2012) observed by a 1290 MHz wind profiler. J. Atmos. Sol.-Terr. Phys., 155, 2735, https://doi.org/10.1016/j.jastp.2017.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merceret, F. J., 1974: On the size distribution of raindrops in Hurricane Ginger. Mon. Wea. Rev., 102, 714716, https://doi.org/10.1175/1520-0493(1974)102<0714:OTSDOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., H.-L. Kim, Y.-W. Ham, and S.-H. Jung, 2017: Comparative evaluation of the OTT PARSIVEL2 using a collocated two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 34, 20592082, https://doi.org/10.1175/JTECH-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Least squares as a maximum likelihood estimator. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge University Press, 963 pp.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258, https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.

    • Crossref
    • Export Citation
  • Smith, P. L., R. W. Johnson, and D. V. Kliche, 2019: On use of the standard deviation of the mass distribution as a parameter in raindrop size distribution functions. J. Appl. Meteor. Climatol., 58, 787796, https://doi.org/10.1175/JAMC-D-18-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and et al. , 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84, 18071826, https://doi.org/10.1175/BAMS-84-12-1807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., R. Checa, and M. de Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, https://doi.org/10.1029/2010GL044120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, https://doi.org/10.1175/2007MWR2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 281 281 21
Full Text Views 105 105 8
PDF Downloads 163 163 9

Vertical Variability of the Raindrop Size Distribution in Typhoons Observed at the Shenzhen 356-m Meteorological Tower

View More View Less
  • 1 Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Meteorological Bureau of Shenzhen Municipality, Shenzhen, China
  • | 4 Jiangxi Xinyu Guoke Technology Co., Ltd., Xinyu, China
  • | 5 Meteorological Observation Centre of China Meteorological Administration, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Raindrop size distribution (DSD) characteristics at various altitudes in two landfalling typhoons in 2017 (Hato and Pakhar) were investigated by using laser-optical disdrometers mounted at four altitudes (10, 40, 160, and 320 m) of the Shenzhen 356-m meteorological tower. Significant differences of the DSD and derived parameters, mass-weighted mean diameter (Dm), normalized intercept parameter (NW), and standard deviation of the mass distribution σm, were observed at different altitudes for the two typhoons, while the rainwater content between the four altitudes had no statistically significant differences. The low-altitude DSDs had more midsize drops (1 < D < 3 mm), fewer large drops (D > 3 mm), and narrower distribution widths than the high-altitude ones, while the concentration of small drops varied nonlinearly with height. The value of NW decreased with height, while Dm and σm increased with height. The gamma distribution parameters N0, μ, and Λ are found to increase with decreasing height. Both the derived μ–Λ and ZR relations were significantly varied in different altitudes.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baojun Chen, chenbj@cma.gov.cn

Abstract

Raindrop size distribution (DSD) characteristics at various altitudes in two landfalling typhoons in 2017 (Hato and Pakhar) were investigated by using laser-optical disdrometers mounted at four altitudes (10, 40, 160, and 320 m) of the Shenzhen 356-m meteorological tower. Significant differences of the DSD and derived parameters, mass-weighted mean diameter (Dm), normalized intercept parameter (NW), and standard deviation of the mass distribution σm, were observed at different altitudes for the two typhoons, while the rainwater content between the four altitudes had no statistically significant differences. The low-altitude DSDs had more midsize drops (1 < D < 3 mm), fewer large drops (D > 3 mm), and narrower distribution widths than the high-altitude ones, while the concentration of small drops varied nonlinearly with height. The value of NW decreased with height, while Dm and σm increased with height. The gamma distribution parameters N0, μ, and Λ are found to increase with decreasing height. Both the derived μ–Λ and ZR relations were significantly varied in different altitudes.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baojun Chen, chenbj@cma.gov.cn
Save