• Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett., 13, 991994, https://doi.org/10.1029/GL013i010p00991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schönhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, https://doi.org/10.1175/2009JTECHA1236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., Y. Wang, and J. Ming, 2012: Microphysical characteristics of the raindrop size distribution in Typhoon Morakot (2009). J. Trop. Meteor., 18, 162171, https://doi.org/10.3969/j.issn.1006-8775.2012.02.006.

    • Search Google Scholar
    • Export Citation
  • Chen, B., J. Wang, and D. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over east China. J. Appl. Meteor. Climatol., 55, 621634, https://doi.org/10.1175/JAMC-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deo, A., and K. J. E. Walsh, 2016: Contrasting tropical cyclone and non-tropical cyclone related rainfall drop size distribution at Darwin, Australia. Atmos. Res., 181, 8194, https://doi.org/10.1016/j.atmosres.2016.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 14531476, https://doi.org/10.1175/JAS-D-17-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Y., 2015: Monitoring and forecasting of finescale structure and impact assessment of landfalling typhoons. Diqiu Kexue Jinzhan, 30, 847854.

    • Search Google Scholar
    • Export Citation
  • Duan, Y., and et al. , 2019: Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bull. Amer. Meteor. Soc., 100, ES447ES472, https://doi.org/10.1175/BAMS-D-18-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, https://doi.org/10.1175/JTECH-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, S. J. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. L. Kelley, and S. F. McLaughlin, 2016: The GPM combined algorithm. J. Atmos. Oceanic Technol., 33, 22252245, https://doi.org/10.1175/JTECH-D-16-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 2004: Super-larger raindrops. Geophys. Res. Lett., 31, L13102, https://doi.org/10.1029/2004GL020167.

  • Hosking, J. G., C. D. Stow, and S. G. Bradley, 1985: Corrections for horizontal winds and wind shear in raindrop size spectrometers. J. Atmos. Oceanic Technol., 2, 181189, https://doi.org/10.1175/1520-0426(1985)002<0181:CFHWAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and et al. , 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., and A. Berne, 2012: Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteor. Climatol., 51, 941953, https://doi.org/10.1175/JAMC-D-11-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: Disdrometer network observations of finescale spatial–temporal clustering in rain. J. Atmos. Sci., 72, 16481666, https://doi.org/10.1175/JAS-D-14-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janapati, J., S. B. Kumar, V. M. Reddy, K. K. Reddy, P.-L. Lin, N. T. Rao, and C.-Y. Liu, 2017: A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India. J. Atmos. Sol.-Terr. Phys., 159, 2340, https://doi.org/10.1016/j.jastp.2017.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M., and et al. , 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D.-K., and D.-I. Lee, 2017: Raindrop size distribution and vertical velocity characteristics in the rainband of Hurricane Bolaven (2012) observed by a 1290 MHz wind profiler. J. Atmos. Sol.-Terr. Phys., 155, 2735, https://doi.org/10.1016/j.jastp.2017.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merceret, F. J., 1974: On the size distribution of raindrops in Hurricane Ginger. Mon. Wea. Rev., 102, 714716, https://doi.org/10.1175/1520-0493(1974)102<0714:OTSDOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-G., H.-L. Kim, Y.-W. Ham, and S.-H. Jung, 2017: Comparative evaluation of the OTT PARSIVEL2 using a collocated two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 34, 20592082, https://doi.org/10.1175/JTECH-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Least squares as a maximum likelihood estimator. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge University Press, 963 pp.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258, https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2.

    • Crossref
    • Export Citation
  • Smith, P. L., R. W. Johnson, and D. V. Kliche, 2019: On use of the standard deviation of the mass distribution as a parameter in raindrop size distribution functions. J. Appl. Meteor. Climatol., 58, 787796, https://doi.org/10.1175/JAMC-D-18-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and et al. , 2003: Improvement of microphysical parameterization through observational verification experiment. Bull. Amer. Meteor. Soc., 84, 18071826, https://doi.org/10.1175/BAMS-84-12-1807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., R. Checa, and M. de Castro, 2010: An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett., 37, L16803, https://doi.org/10.1029/2010GL044120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and P. G. Bashor, 2010: An experimental study of small-scale variability of raindrop size distribution. J. Appl. Meteor. Climatol., 49, 23482365, https://doi.org/10.1175/2010JAMC2269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136, 16691685, https://doi.org/10.1175/2007MWR2122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, https://doi.org/10.1175/JTECH-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, https://doi.org/10.1175/JAM2406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 178 178 7
Full Text Views 71 71 12
PDF Downloads 111 111 11

Vertical Variability of the Raindrop Size Distribution in Typhoons Observed at the Shenzhen 356-m Meteorological Tower

View More View Less
  • 1 Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Meteorological Bureau of Shenzhen Municipality, Shenzhen, China
  • | 4 Jiangxi Xinyu Guoke Technology Co., Ltd., Xinyu, China
  • | 5 Meteorological Observation Centre of China Meteorological Administration, Beijing, China
© Get Permissions
Restricted access

Abstract

Raindrop size distribution (DSD) characteristics at various altitudes in two landfalling typhoons in 2017 (Hato and Pakhar) were investigated by using laser-optical disdrometers mounted at four altitudes (10, 40, 160, and 320 m) of the Shenzhen 356-m meteorological tower. Significant differences of the DSD and derived parameters, mass-weighted mean diameter (D m), normalized intercept parameter (N W), and standard deviation of the mass distribution σ m, were observed at different altitudes for the two typhoons, while the rainwater content between the four altitudes had no statistically significant differences. The low-altitude DSDs had more midsize drops (1 < D < 3 mm), fewer large drops (D > 3 mm), and narrower distribution widths than the high-altitude ones, while the concentration of small drops varied nonlinearly with height. The value of N W decreased with height, while D m and σ m increased with height. The gamma distribution parameters N 0, μ, and Λ are found to increase with decreasing height. Both the derived μ–Λ and ZR relations were significantly varied in different altitudes.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baojun Chen, chenbj@cma.gov.cn

Abstract

Raindrop size distribution (DSD) characteristics at various altitudes in two landfalling typhoons in 2017 (Hato and Pakhar) were investigated by using laser-optical disdrometers mounted at four altitudes (10, 40, 160, and 320 m) of the Shenzhen 356-m meteorological tower. Significant differences of the DSD and derived parameters, mass-weighted mean diameter (D m), normalized intercept parameter (N W), and standard deviation of the mass distribution σ m, were observed at different altitudes for the two typhoons, while the rainwater content between the four altitudes had no statistically significant differences. The low-altitude DSDs had more midsize drops (1 < D < 3 mm), fewer large drops (D > 3 mm), and narrower distribution widths than the high-altitude ones, while the concentration of small drops varied nonlinearly with height. The value of N W decreased with height, while D m and σ m increased with height. The gamma distribution parameters N 0, μ, and Λ are found to increase with decreasing height. Both the derived μ–Λ and ZR relations were significantly varied in different altitudes.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Baojun Chen, chenbj@cma.gov.cn
Save