• Adams, J., and P. Swarztrauber, 1997: SPHEREPACK 2.0: A model development facility. NCAR Tech. Note TN-436+STR, 62 pp., https://doi.org/10.5065/D6Z899CF.

    • Crossref
    • Export Citation
  • Bryan, G. H., 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2017: The governing equations for CM1, version 9. UCAR Tech. Note, 24 pp., https://www2.mmm.ucar.edu/people/bryan/cm1/cm1_equations.pdf.

  • Chen, T.-C., and A. C. Wiin-Nielsen, 1976: On the kinetic energy of the divergent and nondivergent flow in the atmosphere. Tellus, 28, 486498, https://doi.org/10.3402/tellusa.v28i6.11317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y.-K., and L. M. Polvani, 1996: The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids, 8, 15311552, https://doi.org/10.1063/1.868929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtney, J. B., and et al. , 2019: Operational perspectives on tropical cyclone intensity change. Part II: Forecasts by operational agencies. Trop. Cyclone Res. Rev., 8, 226239, https://doi.org/10.1016/j.tcrr.2020.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darrigol, O., and U. Frisch, 2008: From Newton’s mechanics to Euler’s equations. Physica D, 237, 18551869, https://doi.org/10.1016/j.physd.2007.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction System (SHIPS). Wea. Forecast., 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and et al. , 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) experiment. Bull. Amer. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. A. Jeffries, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 13741387, https://doi.org/10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Euler, L., 1752: Sur le mouvement de l’eau par des tuyaux de conduit (On the movement of water through conduit pipes). Mem. Acad. Sci. Berlin, 8, 111148.

    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. A. Maddox, 1981: Preliminary numerical tests of the modification of mesoscale convective systems. J. Appl. Meteor., 20, 910921, https://doi.org/10.1175/1520-0450(1981)020<0910:PNTOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1965: Formation and steering mechanisms of tornado cyclones and associated hook echoes. Mon. Wea. Rev., 93, 6778, https://doi.org/10.1175/1520-0493(1965)093<0067:FASMOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2018: Operational global reanalysis: progress, future directions, and synergies with NWP. ECMWF ERA Rep. 27, 65 pp., https://doi.org/10.21957/TKIC6G3WM.

    • Crossref
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, https://doi.org/10.1002/qj.49712657009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799811, https://doi.org/10.1175/WAF-D-18-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and Y. Ramanathan, 1982: Sensitivity of the monsoon onset to differential heating. J. Atmos. Sci., 39, 12901306, https://doi.org/10.1175/1520-0469(1982)039<1290:SOTMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. Cambridge University Press, 738 pp.

  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnus, G., 1853: Über die Abweichung der Geschosse, und: Über eine abfallende Erscheinung bei rotierenden Körpern. Ann. Phys., 164, 129, https://doi.org/10.1002/andp.18531640102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., and C. S. Velden, 1996: A three-dimensional analysis of the outflow layer of Supertyphoon Flo (1990). Mon. Wea. Rev., 124, 4763, https://doi.org/10.1175/1520-0493(1996)124<0047:ATDAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. Nolan, 2016: Tropical cyclone-relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1970: Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890895, https://doi.org/10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed., Springer, 710 pp.

    • Crossref
    • Export Citation
  • Rappin, E. D., M. C. Morga, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, https://doi.org/10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 17651782, https://doi.org/10.1175/JAS-D-14-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 43, 542561, https://doi.org/10.1175/1520-0469(1987)044%3C0542:AAITFT%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, https://doi.org/10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., and R. E. Hart, 2015: An investigation of center-finding techniques for tropical cyclones in mesoscale models. J. Appl. Meteor. Climatol., 54, 825846, https://doi.org/10.1175/JAMC-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018a: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018b: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part II: Vortex tilt. Mon. Wea. Rev., 146, 38013825, https://doi.org/10.1175/MWR-D-18-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C. Viner, and J. M. Schmidt, 2019: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow-environment interaction. Mon. Wea. Rev., 147, 29192940, https://doi.org/10.1175/MWR-D-18-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2015: Response of a simulated hurricane to misalignment forcing compared to the predictions of a simple theory. J. Atmos. Sci., 72, 12351260, https://doi.org/10.1175/JAS-D-14-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150168, https://doi.org/10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 12051222, https://doi.org/10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., W. Ulrich, and G. Sneddon, 2000: On the dynamics of hurricane-like vortices in vertical-shear flows. Quart. J. Roy. Meteor. Soc., 126, 26532670, https://doi.org/10.1002/qj.49712656903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2017: Hurricane Matthew (AL142016): 28 September–9 October. National Hurricane Center Tropical Cyclone Rep., 96 pp., https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf.

  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 19721990, https://doi.org/10.1175/2008MWR2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 11691180, https://doi.org/10.1175/WAF-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011. Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Wu, C.-C., and K. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50, 6276, https://doi.org/10.1175/1520-0469(1993)050<0062:IOABVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. Emanuel, 1994: On hurricane outflow structure. J. Atmos. Sci., 51, 19952003, https://doi.org/10.1175/1520-0469(1994)051<1995:OHOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 426 426 20
Full Text Views 126 126 11
PDF Downloads 179 179 13

The Tropical Cyclone as a Divergent Source in a Background Flow

View More View Less
  • 1 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • | 2 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
  • | 3 American Society for Engineering Education, Monterey, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The interactions between the outflow of a tropical cyclone (TC) and its background flow are explored using a hierarchy of models of varying complexity. Previous studies have established that, for a select class of TCs that undergo rapid intensification in moderate values of vertical wind shear, the upper-level outflow of the TC can block and reroute the environmental winds, thus reducing the shear and permitting the TC to align and subsequently to intensify. We identify in satellite imagery and reanalysis datasets the presence of tilt nutations and evidence of upwind blocking by the divergent wind field, which are critical components of atypical rapid intensification. We then demonstrate how an analytical expression and a shallow water model can be used to explain some of the structure of upper-level outflow. The analytical expression shows that the dynamic high inside the outflow front is a superposition of two pressure anomalies caused by the outflow’s deceleration by the environment and by the environment’s deceleration by the outflow. The shallow water model illustrates that the blocking is almost entirely dependent upon the divergent component of the wind. Then, using a divergent kinetic energy budget analysis, we demonstrate that, in a full-physics TC, upper-level divergent flow generation occurs in two phases: pressure driven and then momentum driven. The change happens when the tilt precession reaches left of shear. When this change occurs, the outflow blocking extends upshear. We discuss these results with regard to prior severe weather studies.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Corresponding author: David R. Ryglicki, david.ryglicki@nrlmry.navy.mil

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0020.1 and http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0021.1 and http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0370.1.

Abstract

The interactions between the outflow of a tropical cyclone (TC) and its background flow are explored using a hierarchy of models of varying complexity. Previous studies have established that, for a select class of TCs that undergo rapid intensification in moderate values of vertical wind shear, the upper-level outflow of the TC can block and reroute the environmental winds, thus reducing the shear and permitting the TC to align and subsequently to intensify. We identify in satellite imagery and reanalysis datasets the presence of tilt nutations and evidence of upwind blocking by the divergent wind field, which are critical components of atypical rapid intensification. We then demonstrate how an analytical expression and a shallow water model can be used to explain some of the structure of upper-level outflow. The analytical expression shows that the dynamic high inside the outflow front is a superposition of two pressure anomalies caused by the outflow’s deceleration by the environment and by the environment’s deceleration by the outflow. The shallow water model illustrates that the blocking is almost entirely dependent upon the divergent component of the wind. Then, using a divergent kinetic energy budget analysis, we demonstrate that, in a full-physics TC, upper-level divergent flow generation occurs in two phases: pressure driven and then momentum driven. The change happens when the tilt precession reaches left of shear. When this change occurs, the outflow blocking extends upshear. We discuss these results with regard to prior severe weather studies.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Corresponding author: David R. Ryglicki, david.ryglicki@nrlmry.navy.mil

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0020.1 and http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0021.1 and http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-18-0370.1.

Save