• Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, https://doi.org/10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barandiaran, D., S. Y. Wang, and K. Hilburn, 2013: Observed trends in the Great Plains low-level jet and associated precipitation changes in relation to recent droughts. Geophys. Res. Lett., 40, 62476251, https://doi.org/10.1002/2013GL058296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., L. D. Riihimaki, Y. Qian, H. Yan, and M. Huang, 2015: The low-level jet over the southern Great Plains determined from observations and reanalyses and its impact on moisture transport. J. Climate, 28, 66826706, https://doi.org/10.1175/JCLI-D-14-00719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, D. A., C. R. Ferguson, M. A. Campbell, G. Xia, and L. F. Bosart, 2019a: An objective classification and analysis of upper-level coupling to the Great Plains low-level jet over the twentieth century. J. Climate, 32, 71277152, https://doi.org/10.1175/JCLI-D-18-0891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, D. A., C. R. Ferguson, and L. F. Bosart, 2019b: Great Plains low-level jet occurrence and upper-level coupling in CERA-20C. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 28 January 2020, https://doi.org/10.5065/KDB5-9X72.

    • Crossref
    • Export Citation
  • Campbell, M. A., C. R. Ferguson, D. A. Burrows, M. Beauharnois, G. Xia, and L. F. Bosart, 2019: Diurnal effects of regional soil moisture anomalies on the Great Plains low-level jet. Mon. Wea. Rev., 147, 46114631, https://doi.org/10.1175/MWR-D-19-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, D. A. Burrows, and R. L. Leung, 2015: Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather. Geophys. Res. Lett., 42, 10 95210 960, https://doi.org/10.1002/2015GL066959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., E. K. Vizy, Z. S. Launer, and C. M. Patricola, 2008: Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM Simulations of the twenty-first century. J. Climate, 21, 63216340, https://doi.org/10.1175/2008JCLI2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danco, J. F., and E. R. Martin, 2018: Understanding the influence of ENSO on the Great Plains low-level jet in CMIP5 models. Climate Dyn., 51, 15371558, https://doi.org/10.1007/s00382-017-3970-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., E. F. Wood, and R. K. Vinukollu, 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, https://doi.org/10.1175/JHM-D-11-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., M. Pan, and T. Oki, 2018: The effect of global warming on future water availability: CMIP5 synthesis. Water Resour. Res., 54, 77917819, https://doi.org/10.1029/2018wr022792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frye, J. D., and T. L. Mote, 2010: The synergistic relationship between soil moisture and the low-level jet and its role on the prestorm environment in the southern Great Plains. J. Appl. Meteor. Climatol., 49, 775791, https://doi.org/10.1175/2009JAMC2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2015: The relationship between the Pacific–North American teleconnection pattern, the Great Plains low-level jet, and north central U.S. heavy rainfall events. J. Climate, 28, 67296742, https://doi.org/10.1175/JCLI-D-14-00657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8, 784806, https://doi.org/10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, D., and Z. Pu, 2018: Correction to: Characteristics and variations of low-level jets in the contrasting warm season precipitation extremes of 2006 and 2007 over the southern Great Plains. Theor. Appl. Climatol., 136, 773774, https://doi.org/10.1007/s00704-018-2492-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, D., and Z. Pu, 2019: Characteristics and variations of low-level jets and environmental factors associated with summer precipitation extremes over the Great Plains. J. Climate, 32, 51235144, https://doi.org/10.1175/JCLI-D-18-0553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 200205, https://doi.org/10.3402/tellusa.v19i2.9766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. S.-Y., and N. Nakamura, 2016: Local finite-amplitude wave activity as a diagnostic of anomalous weather events. J. Atmos. Sci., 73, 211229, https://doi.org/10.1175/JAS-D-15-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532547, https://doi.org/10.1175/JAS3847.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laloyaux, P., E. De Boisséson, and P. Dahlgren, 2017: CERA-20C: An Earth system approach to climate reanalysis. ECMWF Newsletter, No. 150, ECMWF, Reading, United Kingdom, 25–30, https://www.ecmwf.int/en/elibrary/18164-cera-20c-earth-system-approach-climate-reanalysis.

  • Laloyaux, P., and et al. , 2018: CERA-20C: A coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst., 10, 11721195, https://doi.org/10.1029/2018MS001273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Climate Dyn., 39, 14011412, https://doi.org/10.1007/s00382-011-1214-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malloy, K. M., and B. P. Kirtman, 2020: Predictability of midsummer Great Plains low-level jet and associated precipitation. Wea. Forecasting, 35, 215235, https://doi.org/10.1175/WAF-D-19-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., G. Chen, and D. A. Burrows, 2017: Wave events: Climatology, trends, and relationship to Northern Hemisphere winter blocking and weather extremes. J. Climate, 30, 56755697, https://doi.org/10.1175/JCLI-D-16-0692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of the warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, https://doi.org/10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1967: Severe convective storms. Advances in Geophysics, Vol. 12, Academic Press, 257–308, https://doi.org/10.1016/S0065-2687(08)60377-5.

    • Crossref
    • Export Citation
  • Nikolic, J., S. Zhong, L. Pei, X. Bian, W. E. Heilman, and J. J. Charney, 2019: Sensitivity of low-level jets to land-use and land-cover change over the continental U.S. Atmosphere, 10, 174, https://doi.org/10.3390/atmos10040174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 39373953, https://doi.org/10.1175/JAS-D-17-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699, https://doi.org/10.1175/2010JAS3368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., C. D. Peters-Lidard, and S. V. Kumar, 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, https://doi.org/10.1175/JHM-D-10-05014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262, https://doi.org/10.1002/qj.628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., Z. Feng, R. L. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019: Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains. J. Climate, 32, 67496767, https://doi.org/10.1175/JCLI-D-18-0839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus, 2016a: WRF forecasts of Great Plains nocturnal low-level jet-driven MCSs. Part I: Correlation between low-level jet forecast accuracy and MCS precipitation forecast skill. Wea. Forecasting, 31, 13011323, https://doi.org/10.1175/WAF-D-15-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus, 2016b: WRF forecasts of Great Plains nocturnal low-level jet-driven MCSs. Part II: Differences between strongly and weakly forced low-level jet environments. Wea. Forecasting, 31, 14911510, https://doi.org/10.1175/WAF-D-15-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., J. A. Winkler, S. Zhong, X. Bian, D. L. Doubler, L. Yu, and C. K. Walters, 2017: Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations. Sci. Rep., 7, 5029, https://doi.org/10.1038/s41598-017-05135-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2013: Modulation of the diurnal cycle of warm-season precipitation by short-wave troughs. J. Atmos. Sci., 70, 17101726, https://doi.org/10.1175/JAS-D-12-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108, 16891696, https://doi.org/10.1175/1520-0493(1980)108<1689:OTROUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part II: The synoptic and subsynoptic-scale environment. Wea. Forecasting, 16, 531551, https://doi.org/10.1175/1520-0434(2001)016<0531:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Wea. Forecasting, 16, 513530, https://doi.org/10.1175/1520-0434(2001)016<0531:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., and T.-C. Chen, 2009: The late-spring maximum of rainfall over the U.S. central plains and the role of the low-level jet. J. Climate, 22, 46964709, https://doi.org/10.1175/2009JCLI2719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., X. A. Chen, and J. Correia, 2011: Climatology of summer midtropospheric perturbations in the U.S. northern plains. Part I: Influence on northwest flow severe weather outbreaks. Climate Dyn., 36, 793810, https://doi.org/10.1007/s00382-009-0696-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, https://doi.org/10.1175/2007JCLI1586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. D. Schubert, and H. Wang, 2009: Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and Idealized SST experiments. J. Climate, 22, 54015420, https://doi.org/10.1175/2009JCLI2984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Baxter, and A. Kumar, 2012: Climatic role of North American low-level jets on U.S. regional tornado activity. J. Climate, 25, 66666683, https://doi.org/10.1175/JCLI-D-11-00568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, S.-P., 2000: A new perspective on the regional hydrologic cycle over North and South America. Ph.D. thesis, Iowa State University, 153 pp.

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiser, R., and M. Bolinger, 2019: 2018 wind technologies market report. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 103 pp., https://www.energy.gov/sites/prod/files/2019/08/f65/2018%20Wind%20Technologies%20Market%20Report%20FINAL.pdf.

  • Wu, Y., and S. Raman, 1998: The summertime Great Plains low level jet and the effect of its origin on moisture transport. Bound.-Layer Meteor., 88, 445466, https://doi.org/10.1023/A:1001518302649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., X. Ding, D. Zheng, and Q. Li, 2007: Depiction of the variations of Great Plains precipitation and its relationship with tropical central-eastern pacific SST. J. Appl. Meteor. Climatol., 46, 136153, https://doi.org/10.1175/JAM2455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 189 189 33
Full Text Views 92 92 8
PDF Downloads 114 114 6

The Role of Upper-Level Coupling on Great Plains Low-Level Jet Structure and Variability

View More View Less
  • 1 Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
  • | 2 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Great Plains (GP) southerly nocturnal low-level jet (GPLLJ) is a dominant contributor to the region’s warm-season (May–September) mean and extreme precipitation, wind energy generation, and severe weather outbreaks—including mesoscale convective systems. The spatiotemporal structure, variability, and impact of individual GPLLJ events are closely related to their degree of upper-level synoptic coupling, which varies from strong coupling in synoptic trough–ridge environments to weak coupling in quiescent, synoptic ridge environments. Here, we apply an objective dynamic classification of GPLLJ upper-level coupling and fully characterize strongly coupled (C) and relatively uncoupled (UC) GPLLJs from the perspective of the ground-based observer. Through composite analyses of C and UC GPLLJ event samples taken from the European Centre for Medium-Range Weather Forecasts’ Coupled Earth Reanalysis of the twentieth century (CERA-20C), we address how the frequency of these jet types, as well as their inherent weather- and climate-relevant characteristics—including wind speed, direction, and shear; atmospheric stability; and precipitation—vary on diurnal and monthly time scales across the southern, central, and northern subregions of the GP. It is shown that C and UC GPLLJ events have similar diurnal phasing, but the diurnal amplitude is much greater for UC GPLLJs. C GPLLJs tend to have a faster and more elevated jet nose, less low-level wind shear, and enhanced CAPE and precipitation. UC GPLLJs undergo a larger inertial oscillation (Blackadar mechanism) for all subregions, and C GPLLJs have greater geostrophic forcing (Holton mechanism) in the southern and northern GP. The results underscore the need to differentiate between C and UC GPLLJs in future seasonal forecast and climate prediction activities.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0059.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. Alex Burrows, burrowswx13@gmail.com

Abstract

The Great Plains (GP) southerly nocturnal low-level jet (GPLLJ) is a dominant contributor to the region’s warm-season (May–September) mean and extreme precipitation, wind energy generation, and severe weather outbreaks—including mesoscale convective systems. The spatiotemporal structure, variability, and impact of individual GPLLJ events are closely related to their degree of upper-level synoptic coupling, which varies from strong coupling in synoptic trough–ridge environments to weak coupling in quiescent, synoptic ridge environments. Here, we apply an objective dynamic classification of GPLLJ upper-level coupling and fully characterize strongly coupled (C) and relatively uncoupled (UC) GPLLJs from the perspective of the ground-based observer. Through composite analyses of C and UC GPLLJ event samples taken from the European Centre for Medium-Range Weather Forecasts’ Coupled Earth Reanalysis of the twentieth century (CERA-20C), we address how the frequency of these jet types, as well as their inherent weather- and climate-relevant characteristics—including wind speed, direction, and shear; atmospheric stability; and precipitation—vary on diurnal and monthly time scales across the southern, central, and northern subregions of the GP. It is shown that C and UC GPLLJ events have similar diurnal phasing, but the diurnal amplitude is much greater for UC GPLLJs. C GPLLJs tend to have a faster and more elevated jet nose, less low-level wind shear, and enhanced CAPE and precipitation. UC GPLLJs undergo a larger inertial oscillation (Blackadar mechanism) for all subregions, and C GPLLJs have greater geostrophic forcing (Holton mechanism) in the southern and northern GP. The results underscore the need to differentiate between C and UC GPLLJs in future seasonal forecast and climate prediction activities.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0059.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. Alex Burrows, burrowswx13@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 2.72 MB)
Save