• Chapman, S., and R. Lindzen, 1970: Atmospheric Tides: Thermal and Gravitational. D. Reidel, 200 pp.

    • Crossref
    • Export Citation
  • Deland, R. J., 1965: Some observations of the behavior of spherical harmonic waves. Mon. Wea. Rev., 93, 307312, https://doi.org/10.1175/1520-0493(1965)093<0307:SOOTBO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Díaz-Argandoña, J., A. Ezcurra, J. Senz, J. G. Ibarra-Berástegi, and I. Errasti, 2016: Climatology and temporal evolution of the atmospheric semidiurnal tide in present-day reanalyses. J. Geophys. Res. Atmos., 121, 46144626, https://doi.org/10.1002/2015JD024513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliasen, E., and B. Machenhauer, 1969: On the observed large-scale atmospheric wave motions. Tellus, 21, 149166, https://doi.org/10.3402/tellusa.v21i2.10069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, S.-Y., T. Li, X. Dou, Q. Wu, M. G. Mlynczak, and J. M. Russell, 2013: Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI. J. Geophys. Res. Atmos., 118, 16241639, https://doi.org/10.1002/JGRD.50191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., and et al. , 2018: Use of in situ surface observations at ECMWF. ECMWF Tech. Memo. 834, 26 pp., https://www.ecmwf.int/en/elibrary/18748-use-situ-surface-observations-ecmwf.

  • Hamilton, K., 1984: Evidence for a normal mode Kelvin wave in the atmosphere. J. Meteor. Soc. Japan, 62, 308311, https://doi.org/10.2151/jmsj1965.62.2_308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., and R. R. Garcia, 1986: Theory and observations of the short-period normal mode oscillations of the atmosphere. J. Geophys. Res., 91, 11 86711 875, https://doi.org/10.1029/JD091iD11p11867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., and T. Sakazaki, 2017: A note on apparent solar time and the seasonal cycle of atmospheric solar tides. Quart. J. Roy. Meteor. Soc., 143, 23102314, https://doi.org/10.1002/qj.3076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA-5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 1724, https://www.ecmwf.int/node/19027.

    • Search Google Scholar
    • Export Citation
  • Hill, F., and et al. , 1996: The solar acoustic spectrum and eigenmode parameters. Science, 272, 12921295, https://doi.org/10.1126/science.272.5266.1292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, I., and T. Hirooka, 1984: Normal mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci., 41, 12531267, https://doi.org/10.1175/1520-0469(1984)041<1253:NMRWOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1996: Excitation of transient waves by localized episodic heating in the tropics and their propagation into the middle atmosphere. J. Meteor. Soc. Japan, 74, 189210, https://doi.org/10.2151/jmsj1965.74.2_189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1976: Normal modes of ultralong waves in the atmosphere. Mon. Wea. Rev., 104, 669690, https://doi.org/10.1175/1520-0493(1976)104<0669:NMOUWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1980: Effect of zonal flows on the free oscillations of a barotropic atmosphere. J. Atmos. Sci., 37, 917929, https://doi.org/10.1175/1520-0469(1980)037<0917:EOZFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2014: An introduction to combined Fourier-wavelet transform and its application to convectively coupled equatorial waves. Climate Dyn., 43, 13391356, https://doi.org/10.1007/s00382-013-1949-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Staub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and J. M. Wallace, 2014: Lunar gravitational atmospheric tide, surface to 50 km in a global, gridded data set. Geophys. Res. Lett., 41, 86608665, https://doi.org/10.1002/2014GL060818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., E. S. Batten, and J.-W. Kim, 1968: Oscillations in atmospheres with tops. Mon. Wea. Rev., 96, 133140, https://doi.org/10.1175/1520-0493(1968)096<0133:OIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1968: The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. Roy. Soc. London, A262, 511607, https://doi.org/10.1098/rsta.1968.0003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2007: Large-scale, free Rossby waves in the atmosphere—An update. Tellus, 59A, 571590, https://doi.org/10.1111/j.1600-0870.2007.00257.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2019: How I learned to love normal-mode Rossby–Haurwitz waves. Bull. Amer. Meteor. Soc., 100, 503511, https://doi.org/10.1175/BAMS-D-17-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Julian, 1972: Further evidence of global-scale, 5-day pressure waves. J. Atmos. Sci., 29, 14641469, https://doi.org/10.1175/1520-0469(1972)029<1464:FEOGSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1980: A trial of search for minor components of lunar tides and short period free oscillations of the atmosphere in surface pressure data. J. Meteor. Soc. Japan, 58, 281285, https://doi.org/10.2151/jmsj1965.58.4_281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, R. A., and R. A. Madden, 2000: Observed propagation and structure of the 33-h atmospheric Kelvin wave. J. Atmos. Sci., 57, 34883497, https://doi.org/10.1175/1520-0469(2000)057<3488:OPASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, H. G., 1972: A discussion on D and E region winds over Europe—Long-period meteor wind oscillations. Philos. Trans. Roy. Soc. London, 271A, 585599, https://doi.org/10.1098/rsta.1972.0026.

    • Search Google Scholar
    • Export Citation
  • Nawa, K., N. Suda, Y. Fukao, T. Sato, Y. Aoyama, and K. Shibuya, 1998: Incessant excitation of the Earth’s free oscillations. Earth Planets Space, 50, 38, https://doi.org/10.1186/BF03352080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishida, K., N. Kobayashi, and Y. Fukao, 2000: Resonant oscillations between the solid Earth and the atmosphere. Science, 287, 22442246, https://doi.org/10.1126/science.287.5461.2244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530, https://doi.org/10.1175/1520-0477-56.5.527.

    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., M. Fujiwara, and M. Shiotani, 2018: Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations. Atmos. Chem. Phys., 18, 14371456, https://doi.org/10.5194/acp-18-1437-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1979: On the solution of the homogeneous vertical structure problem for long-period oscillations. J. Atmos. Sci., 36, 23502359, https://doi.org/10.1175/1520-0469(1979)036<2350:OTSOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1980: The influence of realistic dissipation on planetary normal structures. J. Atmos. Sci., 37, 21862199, https://doi.org/10.1175/1520-0469(1980)037<2186:TIORDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1981a: Rossby normal modes in nonuniform background configurations. Part I: Simple fields. J. Atmos. Sci., 38, 18031826, https://doi.org/10.1175/1520-0469(1981)038<1803:RNMINB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1981b: Rossby normal modes in nonuniform background configurations. Part II: Equinox and solstice conditions. J. Atmos. Sci., 38, 18271840, https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1984: Survey of planetary-scale traveling waves: The state of theory and observations. Rev. Geophys. Space Phys., 22, 209236, https://doi.org/10.1029/RG022i002p00209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schindelegger, M., and H. Dobslaw, 2016: A global ground truth view of the lunar air pressure tide L2. J. Geophys. Res. Atmos., 121, 95110, https://doi.org/10.1002/2015JD024243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., I. Polichtchouk, R. Hogan, and A. J. Simmons, 2018: Report on Stratosphere Task Force. ECMWF Tech. Memo. 824, 32 pp., https://doi.org/10.21957/0vkp0t1xx.

    • Crossref
    • Export Citation
  • Shved, G. M., S. I. Ermolenko, and P. Hoffmann, 2015: Revealing short-period normal modes of the atmosphere. Atmos. Oceanic Phys., 51, 498504, https://doi.org/10.1134/S0001433815050126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449, https://doi.org/10.2151/jmsj1965.72.3_433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1929: Waves and tides in the atmosphere. Proc. Roy. Soc. London, 126A, 169183, https://doi.org/10.1098/rspa.1929.0213.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, P. D., and et al. , 2017: A census of atmospheric variability from seconds to decades. Geophys. Res. Lett., 44, 11 20111 211, https://doi.org/10.1002/2017GL075483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žagar, N., A. Kasahara, K. Terasaki, J. Tribbia, and H. Tanaka, 2015: Normal-mode function representation of global 3-D data sets: Open-access software for the atmospheric research community. Geosci. Model Dev., 8, 11691195, https://doi.org/10.5194/gmd-8-1169-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F., and K. Hamilton, 1986: Simulation of solar tides in the Canadian Climate Centre general circulation model. J. Geophys. Res., 91, 11 87711 898, https://doi.org/10.1029/JD091iD11p11877.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 664 664 102
Full Text Views 30 30 1
PDF Downloads 37 37 1

An Array of Ringing Global Free Modes Discovered in Tropical Surface Pressure Data

View More View Less
  • 1 Graduate School of Science, Kyoto University, Kyoto, Japan
  • | 2 International Pacific Research Center, and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

We used newly available ERA5 hourly global data to examine the variations of atmospheric circulation on global scales and high frequencies. The space–time spectrum of surface pressure displays a typical red background spectrum but also a striking number of isolated peaks. Some peaks represent astronomically forced tides, but we show that most peaks are manifestations of the ringing of randomly excited global-scale resonant modes, reminiscent of the tones in a spectrum of a vibrating musical instrument. A few such modes have been tentatively identified in earlier observational investigations, but we demonstrate the existence of a large array of normal mode oscillations with periods as short as 2 h. This is a powerful and uniquely detailed confirmation of the predictions of the theory of global oscillations that has its roots in the work of Laplace two centuries ago. The delineation of the properties of the modes provides valuable diagnostic information about the atmospheric circulation. Notably the amplitudes and widths of the normal mode spectral peaks contain information on the forcing mechanisms and energy dissipation for the modes, and the simulation of these properties for each of the many modes we have identified can serve as tests for global climate and weather prediction models.

Corresponding author: Takatoshi Sakazaki, zaki@kugi.kyoto-u.ac.jp

Abstract

We used newly available ERA5 hourly global data to examine the variations of atmospheric circulation on global scales and high frequencies. The space–time spectrum of surface pressure displays a typical red background spectrum but also a striking number of isolated peaks. Some peaks represent astronomically forced tides, but we show that most peaks are manifestations of the ringing of randomly excited global-scale resonant modes, reminiscent of the tones in a spectrum of a vibrating musical instrument. A few such modes have been tentatively identified in earlier observational investigations, but we demonstrate the existence of a large array of normal mode oscillations with periods as short as 2 h. This is a powerful and uniquely detailed confirmation of the predictions of the theory of global oscillations that has its roots in the work of Laplace two centuries ago. The delineation of the properties of the modes provides valuable diagnostic information about the atmospheric circulation. Notably the amplitudes and widths of the normal mode spectral peaks contain information on the forcing mechanisms and energy dissipation for the modes, and the simulation of these properties for each of the many modes we have identified can serve as tests for global climate and weather prediction models.

Corresponding author: Takatoshi Sakazaki, zaki@kugi.kyoto-u.ac.jp
Save