• Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, https://doi.org/10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2013: Severe Convective Storms and Tornadoes. Springer, 220225.

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresson, E., V. Ducrocq, O. Nuissier, D. Ricard, and C. de Saint-Aubin, 2012: Idealized numerical simulations of quasi-stationary convective systems over the northwestern Mediterranean complex terrain. Quart. J. Roy. Meteor. Soc., 138, 17511763, https://doi.org/10.1002/qj.1911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, https://doi.org/10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comin, A. N., M. M. Miglietta, U. Rizza, O. C. Acevedo, and G. A. Degrazia, 2015: Investigation of sea-breeze convergence in Salento Peninsula (southeastern Italy). Atmos. Res., 160, 6879, https://doi.org/10.1016/j.atmosres.2015.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 2001: Understanding Hector: The dynamics of island thunderstorms. Mon. Wea. Rev., 129, 15501563, https://doi.org/10.1175/1520-0493(2001)129<1550:UHTDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., K. Kurihara, T. Kato, G. Mills, and K. Puri, 1998: Dynamics and prediction of a mesoscale extreme rain event in the baiu front over Kyushu, Japan. Mon. Wea. Rev., 126, 16081629, https://doi.org/10.1175/1520-0493(1998)126<1608:DAPOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1971: On the magnitude of the subgrid scale eddy coefficient. J. Comput. Phys., 7, 120133, https://doi.org/10.1016/0021-9991(71)90053-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143, 25372555, https://doi.org/10.1002/qj.3105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176, https://doi.org/10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and R. B. Wilhelmson, 2012: The impact of airmass boundaries on the propagation of deep convection: A modeling-based study in a high-CAPE, low-shear environment. Mon. Wea. Rev., 140, 167183, https://doi.org/10.1175/MWR-D-10-05033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a non-hydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech Rep., 238 pp.

  • Ito, J., S. Hayashi, A. Hashimoto, H. Ohtake, F. Uno, H. Yoshimura, T. Kato, and Y. Yamada, 2017: Stalled improvement in a numerical weather prediction model as horizontal resolution increases to the sub-kilometer scale. SOLA, 13, 151156, https://doi.org/10.2151/SOLA.2017-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, R., K. Shimose, and S. Shimizu, 2018: Predictability of precipitation caused by linear precipitation systems during the July 2017 northern Kyushu heavy rainfall event using a cloud-resolving numerical weather prediction model. J. Disaster Res., 13, 846859, https://doi.org/10.20965/jdr.2018.p0846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., 1998: Numerical simulation of the band-shaped torrential rain observed over southern Kyushu, Japan on 1 August 1993. J. Meteor. Soc. Japan, 76, 97128, https://doi.org/10.2151/jmsj1965.76.1_97.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., 2005: Statistical study of band-shaped rainfall systems, the Koshikijima and Nagasaki lines, observed around Kyushu Island, Japan. J. Meteor. Soc. Japan, 83, 943957, https://doi.org/10.2151/jmsj.83.943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., 2006: Structure of the band-shaped precipitation system inducing the heavy rainfall observed over northern Kyushu, Japan on 29 June 1999. J. Meteor. Soc. Japan, 84, 129153, https://doi.org/10.2151/jmsj.84.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., 2020: Quasi-stationary band-shaped precipitation systems, named “Senjo-Kousuitai”, causing localized heavy rainfall in Japan. J. Meteor. Soc. Japan, 98, 485509, https://doi.org/10.2151/jmsj.2020-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, T., and H. Goda, 2001: Formation and maintenance processes of a stationary band-shaped heavy rainfall observed in Niigata on 4 August 1998. J. Meteor. Soc. Japan, 79, 899924, https://doi.org/10.2151/jmsj.79.899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawano, T., and R. Kawamura, 2020: Genesis and maintenance processes of a quasi-stationary convective band that produced record-breaking precipitation in northern Kyushu, Japan on 5 July 2017. J. Meteor. Soc. Japan, 98, 673690, https://doi.org/10.2151/jmsj.2020-033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida Peninsula. Mon. Wea. Rev., 119, 298323, https://doi.org/10.1175/1520-0493(1991)119<0298:ATDNIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oizumi, T., K. Saito, J. Ito, T. Kuroda, and L. Duc, 2018: Ultra-high-resolution numerical weather prediction with a large domain using the K computer: A case study of the Izu Oshima heavy rainfall event on October 15-16, 2013. J. Meteor. Soc. Japan, 96, 2554, https://doi.org/10.2151/jmsj.2018-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2007: Simulated convective lines with parallel stratiform precipitation. Part II: Governing dynamics and associated sensitivities. J. Atmos. Sci., 64, 289313, https://doi.org/10.1175/JAS3854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., J.-i. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304, https://doi.org/10.2151/jmsj.85B.271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., M. Kunii, and K. Araki, 2018: Cloud resolving simulation of a local heavy rainfall event on 26 August 2011 observed in TOMACS. J. Meteor. Soc. Japan, 96A, 175199, https://doi.org/10.2151/jmsj.2018-027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, https://doi.org/10.1175/2008JAS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, https://doi.org/10.1175/JAS-D-14-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, https://doi.org/10.1175/2008MWR2471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2018: Importance of terrain representation in simulating a stationary convective system for the July 2017 northern Kyushu heavy rainfall case. SOLA, 14, 153158, https://doi.org/10.2151/SOLA.2018-027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuguti, H., 2019: A case study of the northern Kyushu heavy rainfall event during 5-6 July 2017. 13th Conf. on Mesoscale Convective Systems and High-Impact Weather in East Asia, Naha, Japan, ICMCS, P209.

  • Unuma, T., and T. Takemi, 2016: Characteristics and environmental conditions of quasi-stationary convective clusters during the warm season in Japan. Quart. J. Roy. Meteor. Soc., 142, 12321249, https://doi.org/10.1002/qj.2726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2017: Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Mon. Wea. Rev., 145, 39473967, https://doi.org/10.1175/MWR-D-16-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., D. J. Kirshbaum, R. S. Plant, and H. W. Lean, 2014: A ‘Boscastle-type’ quasi-stationary convective system over the UK Southwest Peninsula. Quart. J. Roy. Meteor. Soc., 140, 240257, https://doi.org/10.1002/qj.2124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M., and Coauthors, 2000: Analytical and numerical study of the 26 June 1998 orographic rainband observed in western Kyushu, Japan. J. Meteor. Soc. Japan, 78, 835856, https://doi.org/10.2151/jmsj1965.78.6_835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., X. Wu, X. Zeng, and T. Mitovski, 2016: Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE. Climate Dyn., 47, 21772192, https://doi.org/10.1007/s00382-015-2957-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 160 160 35
Full Text Views 85 85 28
PDF Downloads 103 103 26

Idealized High-Resolution Simulations of a Back-Building Convective System that Causes Torrential Rain

View More View Less
  • 1 Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
  • 2 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
  • 3 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan
© Get Permissions
Restricted access

Abstract

Record-breaking precipitation due to a back-building convective system occurred in Kyushu Island, Japan, on 5 July 2017. In this paper, a quasi-stationary back-building convective system is reproduced using a regional weather prediction model initialized with a single representative sounding in which the land–sea distribution around the observed convective system is crudely simplified. The simulated convective system and heavy precipitation are reasonably similar to observations. Horizontal resolution finer than 1 km is found to be necessary for reproducing the convective system. The area of heavy precipitation tends to shift downstream with finer horizontal resolution. The surface temperature contrasts at the northern and southern coastlines cause sea breezes and a stationary convergence line between them continuously triggers cumulus clouds. The horizontal convergence near the surface is further enhanced by preceding cumulus clouds that cause the latent heating aloft and generate a mesoscale surface pressure depression. Vertical shear of the environmental wind is also found to be important for organizing the convective system but veering of its wind direction and a cold pool are not essential.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0150.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junshi Ito, junshi@tohoku.ac.jp

Abstract

Record-breaking precipitation due to a back-building convective system occurred in Kyushu Island, Japan, on 5 July 2017. In this paper, a quasi-stationary back-building convective system is reproduced using a regional weather prediction model initialized with a single representative sounding in which the land–sea distribution around the observed convective system is crudely simplified. The simulated convective system and heavy precipitation are reasonably similar to observations. Horizontal resolution finer than 1 km is found to be necessary for reproducing the convective system. The area of heavy precipitation tends to shift downstream with finer horizontal resolution. The surface temperature contrasts at the northern and southern coastlines cause sea breezes and a stationary convergence line between them continuously triggers cumulus clouds. The horizontal convergence near the surface is further enhanced by preceding cumulus clouds that cause the latent heating aloft and generate a mesoscale surface pressure depression. Vertical shear of the environmental wind is also found to be important for organizing the convective system but veering of its wind direction and a cold pool are not essential.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0150.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Junshi Ito, junshi@tohoku.ac.jp

Supplementary Materials

    • Supplemental Materials (PDF 950 KB)
Save