Does Balance Dynamics Well Capture the Secondary Circulation and Spinup of a Simulated Hurricane?

Michael T. Montgomery aNaval Postgraduate School, Monterey, California

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5383-4648
and
John Persing aNaval Postgraduate School, Monterey, California

Search for other papers by John Persing in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates a claim made by Heng et al. in an article published in 2017 and intimated soon after in their article published in 2018 that axisymmetric “balanced dynamics can well capture the secondary circulation in the full-physics model” during hurricane spinup. Using output from a new, convection-permitting, three-dimensional numerical simulation of an intensifying hurricane, azimuthally averaged forcings of tangential momentum and heat are diagnosed to force an axisymmetric Eliassen balance model under strict balance conditions. The balance solutions are found, inter alia, to poorly represent the peak inflow velocity in the boundary layer and present a layer of relatively deep inflow extending well above the boundary layer in the high-wind-speed region of the vortex. Such a deep inflow layer, a hallmark of the classical spinup mechanism for tropical cyclones comprising the radial convergence of absolute angular momentum above the boundary layer, is not found in the numerical simulation during the period of peak intensification. These deficiencies are traced to the inability of the balance model to represent the nonlinear boundary layer spinup mechanism. These results are contrasted with a pseudobalance Eliassen formulation that improves the solution in some respects while sacrificing strict thermal wind balance. Overall, the quantitative results refute the Heng et al. claim and implicate the general necessity of the nonlinear boundary layer spinup mechanism to explain the spinup of a hurricane in realistic model configurations and in reality.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael T. Montgomery, mtmontgo@nps.edu

Abstract

This study investigates a claim made by Heng et al. in an article published in 2017 and intimated soon after in their article published in 2018 that axisymmetric “balanced dynamics can well capture the secondary circulation in the full-physics model” during hurricane spinup. Using output from a new, convection-permitting, three-dimensional numerical simulation of an intensifying hurricane, azimuthally averaged forcings of tangential momentum and heat are diagnosed to force an axisymmetric Eliassen balance model under strict balance conditions. The balance solutions are found, inter alia, to poorly represent the peak inflow velocity in the boundary layer and present a layer of relatively deep inflow extending well above the boundary layer in the high-wind-speed region of the vortex. Such a deep inflow layer, a hallmark of the classical spinup mechanism for tropical cyclones comprising the radial convergence of absolute angular momentum above the boundary layer, is not found in the numerical simulation during the period of peak intensification. These deficiencies are traced to the inability of the balance model to represent the nonlinear boundary layer spinup mechanism. These results are contrasted with a pseudobalance Eliassen formulation that improves the solution in some respects while sacrificing strict thermal wind balance. Overall, the quantitative results refute the Heng et al. claim and implicate the general necessity of the nonlinear boundary layer spinup mechanism to explain the spinup of a hurricane in realistic model configurations and in reality.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael T. Montgomery, mtmontgo@nps.edu
Save
  • Abarca, S. F. , and M. T. Montgomery , 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 37233738, https://doi.org/10.1175/JAS-D-14-0018.1.

    • Search Google Scholar
    • Export Citation
  • Abarca, S. F. , and M. T. Montgomery , 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 8287, https://doi.org/10.1175/JAS-D-14-0151.1.

    • Search Google Scholar
    • Export Citation
  • Abarca, S. F. , M. T. Montgomery , S. A. Braun , and J. Dunion , 2016: One the secondary eyewall formation of Hurricane Edouard (2014). Mon. Wea. Rev., 144, 33213331, https://doi.org/10.1175/MWR-D-15-0421.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H. , 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Search Google Scholar
    • Export Citation
  • Bui, H. H. , R. K. Smith , M. T. Montgomery , and J. Peng , 2009: Balance and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J. , M. T. Montgomery , and Z. Wang , 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A. , 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960

    • Search Google Scholar
    • Export Citation
  • Fang, J. , and F. Zhang , 2011: Evolution of multiscale vortices in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122, https://doi.org/10.1175/2010JAS3522.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A. , M. T. Montgomery , and C. A. Davis , 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heng, J. , Y. Wang , and W. Zhou , 2017: Revisiting the balanced and unbalanced aspects of tropical cyclone intensification. J. Atmos. Sci., 74, 25752591, https://doi.org/10.1175/JAS-D-17-0046.1.

    • Search Google Scholar
    • Export Citation
  • Heng, J. , Y. Wang , and W. Zhou , 2018: Reply to “Comments on ‘Revisiting the balanced and unbalanced aspects of tropical cyclone intensification’.” J. Atmos. Sci., 75, 24972505, https://doi.org/10.1175/JAS-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R. , 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Huang, Y.-H. , C.-C. Wu , and M. T. Montgomery , 2018: Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analysis. J. Atmos. Sci., 75, 35413563, https://doi.org/10.1175/JAS-D-18-0037.1.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G. , R. K. Smith , and M. T. Montgomery , 2016: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, https://doi.org/10.1175/JAS-D-15-0157.1.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K. , 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D. , and L. J. Shapiro , 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 18661881, https://doi.org/10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , and R. K. Smith , 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Ocean J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , and R. K. Smith , 2017a: On the applicability of linear, axisymmetric dynamics in intensifying and mature tropical cyclones. Fluids, 2, 69, https://doi.org/10.3390/fluids2040069.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , and R. K. Smith , 2017b: Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , and R. K. Smith , 2018: Comments on “Revisiting the balanced and unbalanced aspects of tropical cyclone intensification.” J. Atmos. Sci., 75, 24912496, https://doi.org/10.1175/JAS-D-17-0323.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , M. E. Nicholls , T. A. Cram , and A. B. Saunders , 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , J. Persing , and R. K. Smith , 2019: On the hypothesized outflow control of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 145, 13091322, https://doi.org/10.1002/qj.3479.

    • Search Google Scholar
    • Export Citation
  • Nguyen, S. V. , R. K. Smith , and M. T. Montgomery , 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V. , 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persing, J. , and M. T. Montgomery , 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371, https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persing, J. , M. T. Montgomery , J. C. McWilliams , and R. K. Smith , 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, https://doi.org/10.5194/acp-13-12299-2013.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R. , and K. A. Emanuel , 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A. , and K. Menelaou , 2020: Development of a misaligned tropical cyclone. J. Atmos. Sci., 77, 79111, https://doi.org/10.1175/JAS-D-19-0074.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J. , and H. W. Willoughby , 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J. , 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , 2006: Accurate determination of a balanced axisymmetric vortex. Tellus, 58, 98103, https://doi.org/10.1111/j.1600-0870.2006.00149.x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , and S. Vogl , 2008: A simple model of the hurricane boundary layer revisited. Quart. J. Roy. Meteor. Soc., 134, 337351, https://doi.org/10.1002/qj.216.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , and G. L. Thomsen , 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , and M. T. Montgomery , 2016a: Comments on “Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications of tropical cyclone intensification.” J. Atmos. Sci., 73, 51015103, https://doi.org/10.1175/JAS-D-16-0163.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , and M. T. Montgomery , 2016b: Understanding hurricanes. Weather, 71, 219223, https://doi.org/10.1002/wea.2776.

  • Smith, R. K. , M. T. Montgomery , and H. Zhu , 2005: Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40, 189208, https://doi.org/10.1016/j.dynatmoce.2005.03.003.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , M. T. Montgomery , and V. S. Nguyen , 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, https://doi.org/10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , M. T. Montgomery , and H. Bui , 2018: Axisymmetric balance dynamics of tropical cyclone intensification and its breakdown revisited. J. Atmos. Sci., 75, 31693189, https://doi.org/10.1175/JAS-D-17-0179.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P. , J. L. Vigh , D. S. Nolan , and F. Zhang , 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S. , and R. K. Smith , 2019: Consequences of regularizing the Sawyer-Eliassen equation in balance models for tropical cyclone behaviour. Quart. J. Roy. Meteor. Soc., 145, 37663779, https://doi.org/10.1002/qj.3656.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E. , 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, https://doi.org/10.1029/JC084IC06P03173.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L. , Y. Liu , and M. K. Yau , 2001: A multi-scale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107, https://doi.org/10.1175/1520-0493(2001)129<0092:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , and M. T. Montgomery , 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, https://doi.org/10.1175/JAS-D-11-0180.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , F. D. Marks , M. T. Montgomery , and S. Lorsolo , 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 381 0 0
Full Text Views 720 178 22
PDF Downloads 646 118 6