Examination of Aerosol-Induced Convective Invigoration Using Idealized Simulations

William R. Cotton aColorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
and
Robert Walko bUniversity of Miami, Miami, Florida

Search for other papers by Robert Walko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Idealized large-eddy simulations (LESs) are performed of deep convective clouds over south Florida to examine the relative role of aerosol-induced condensational versus mixed-phase invigoration to convective intensity and rainfall. Aerosol concentrations and chemistry are represented by using output from the GEOS-Chem global atmospheric chemistry model run with and without anthropogenic aerosol sources. The results clearly show that higher aerosol concentrations result in enhanced precipitation, larger amounts of cloud liquid water content, enhanced updraft velocities during the latter part of the simulation, and a modest enhancement of the latent heating of condensation. Overall, our results are consistent with the concept that convective cloud invigoration is mainly due to condensational invigoration and not primarily to mixed-phase invigoration. Furthermore, our results suggest that condensational invigoration can result in appreciable precipitation enhancement of ordinary warm-based convective clouds such as are common in locations like south Florida.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William R. Cotton, william.r.cotton@gmail.com

Abstract

Idealized large-eddy simulations (LESs) are performed of deep convective clouds over south Florida to examine the relative role of aerosol-induced condensational versus mixed-phase invigoration to convective intensity and rainfall. Aerosol concentrations and chemistry are represented by using output from the GEOS-Chem global atmospheric chemistry model run with and without anthropogenic aerosol sources. The results clearly show that higher aerosol concentrations result in enhanced precipitation, larger amounts of cloud liquid water content, enhanced updraft velocities during the latter part of the simulation, and a modest enhancement of the latent heating of condensation. Overall, our results are consistent with the concept that convective cloud invigoration is mainly due to condensational invigoration and not primarily to mixed-phase invigoration. Furthermore, our results suggest that condensational invigoration can result in appreciable precipitation enhancement of ordinary warm-based convective clouds such as are common in locations like south Florida.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: William R. Cotton, william.r.cotton@gmail.com
Save
  • Altaratz, O. , I. Koren , L. A. Remer , and E. Hirsch , 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140–141, 3860, https://doi.org/10.1016/j.atmosres.2014.01.009.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O. , D. Rosenfeld , P. Artaxo , A. A. Cosa , G. P. Frank , K. M. Longo , and M. A. F. Silva-Dias , 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Bey, I. , and Coauthors, 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106, 23 07323 095, https://doi.org/10.1029/2001JD000807.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G. , and W. R. Cotton , 2011a: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 25572567, https://doi.org/10.5194/acp-11-2557-2011.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G. , and W. R. Cotton , 2011b: Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability. Atmos. Res., 102, 167174, https://doi.org/10.1016/j.atmosres.2011.06.022.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L. , 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857878, https://doi.org/10.1175/1520-0469(1973)030<0857:NMOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clavner, M. , W. R. Cotton , S. C. van den Heever , J. R. Pierce , and S. M. Saleeby , 2018a: The response of a simulated mesoscale convective system to increased aerosol pollution. Part I: Precipitation intensity, distribution and efficiency. Atmos. Res., 199, 193208, https://doi.org/10.1016/j.atmosres.2017.08.010.

    • Search Google Scholar
    • Export Citation
  • Clavner, M. , L. D. Grasso , W. R. Cotton , and S. C. van den Heever , 2018b: The response of a simulated mesoscale convective system to increased aerosol pollution. Part II: Derecho characteristics and intensity in response to increased pollution. Atmos. Res., 199, 209223, https://doi.org/10.1016/j.atmosres.2017.06.002.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A. , M. W. Shephard , E. J. Mlawer , J. S. Delamere , M. J. Iacono , K. Cady-Pereira , S. Boukabara , and P. D. Brown , 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R. , and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529, https://doi.org/10.1007/s00703-001-0584-9.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R. , G. M. Krall , and G. G. Carrió , 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool activity. Trop. Cyclone Res. Rev., 1, 293306, https://doi.org/10.6057/2012TCRR03.05.

    • Search Google Scholar
    • Export Citation
  • Fan, J. , and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Search Google Scholar
    • Export Citation
  • Herbener, S. R. , S. C. van den Heever , G. G. Carrió , S. M. Saleeby , and W. R. Cotton , 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71, 20402055, https://doi.org/10.1175/JAS-D-13-0202.1.

    • Search Google Scholar
    • Export Citation
  • Key, J. R. , P. Yang , A. B Bryan , and S. L. Nasiri , 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, 4181, https://doi.org/10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • Khain, A. , D. Rosenfeld , and A. Pokrovsky , 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L. , and W. J. Martin , 1994: Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci., 51, 17281739, https://doi.org/10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koren, I. , G. Dagan , and O. Altaratz , 2014: From aerosol-limited to invigoration of warm convective clouds. Science, 344, 11431146, https://doi.org/10.1126/science.1252595.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V. , and I. P. Mazin , 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lance, S. , and Coauthors, 2009: Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). J. Geophys. Res., 114, D00F15, https://doi.org/10.1029/2008JD011699.

    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J. , and J. H. Seinfeld , 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, https://doi.org/10.5194/acp-11-5407-2011.

    • Search Google Scholar
    • Export Citation
  • Li, X. , W.-K. Tao , H. Masunaga , G. Gu , and X. Zeng , 2013: Aerosol effects on cumulus congestus population over the tropical Pacific: A cloud-resolving modeling study. J. Meteor. Soc. Japan, 91, 817833, https://doi.org/10.2151/jmsj.2013-607.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J. , S. J. Taubman , P. D. Brown , M. J. Iacono and S. A. Clough , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R. , and C. A. Knight , 1984: Mixing and the evolution of could droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 18011815, https://doi.org/10.1175/1520-0469(1984)041<1801:MATEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D. , and S. M. Kreidenweis , 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, https://doi.org/10.5194/acp-7-1961-2007.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A. , and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991, https://doi.org/10.1007/BF01025401.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R. , and J. D. Klett , 1980: Microphysics of Clouds and Precipitation. D. Reidel Publishing Co., 714 pp.

  • Rosenfeld, D. , U. Lohmann , G. B. Raga , C. D. O’Dowd , M. Kulmala , S. Fuzzi , A. Reissell , and M. O. Andreae , 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. , W. L. Woodley , A. Khain , W. R. Cotton , G. Carrió , I. Ginis , and J. H. Golden , 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby S. M. , and W. R. Cotton , 2004: A large droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saleeby S. M. , and W. R. Cotton , 2005: A large droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteor., 44, 19121929, https://doi.org/10.1175/JAM2312.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby S. M. , and W. R. Cotton , 2008: A binned approach to cloud droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703, https://doi.org/10.1175/2007JAMC1664.1.

    • Search Google Scholar
    • Export Citation
  • Saleeby S. M. , W. Y. Y. Cheng , and W. R. Cotton , 2007: New developments in the regional atmospheric modeling system suitable for simulations of snowpack augmentation over complex terrain. J. Wea. Modif., 39, 3749, https://journalofweathermodification.org/index.php/JWM/article/view/196/241.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M. , S. R. Herbener , S. C. van den Heever , and T. L’Ecuyer , 2015: Impacts of cloud droplet–nucleating aerosols on shallow tropical convection. J. Atmos. Sci., 72, 13691385, https://doi.org/10.1175/JAS-D-14-0153.1.

    • Search Google Scholar
    • Export Citation
  • Seiki, T. , and T. Nakajima , 2014: Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71, 833853 https://doi.org/10.1175/JAS-D-12-0195.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, A. M. , S. M. Saleeby , and S. C van den Heever , 2015: Aerosol-induced mechanisms for cumulus congestus growth. J. Geophys. Res. Atmos., 120, 89418952, https://doi.org/10.1002/2015JD023743.

    • Search Google Scholar
    • Export Citation
  • Slawinska, J. , W. W. Grabowski , H. Pawlowska , and H. Morrison , 2012: Droplet activation and mixing in large-eddy simulation of a shallow cumulus field. J. Atmos. Sci., 69, 444462, https://doi.org/10.1175/JAS-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B. , R. L. Walko , W. R. Cotton , and G. Feingold , 1996: Spurious production of cloud-edge supersaturations by Eulerian models. Mon. Wea. Rev., 124, 10341041, https://doi.org/10.1175/1520-0493(1996)124<1034:TSPOCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L. , and S. C. van den Heever , 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, https://doi.org/10.1175/JAS-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A. , and Coauthors, 2017: DCMIP2016: A review of non-hydrostatic dynamical core design and intercomparison of participating models. Geosci. Model Dev., 10, 44774509, https://doi.org/10.5194/gmd-10-4477-2017.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C. , and W. R. Cotton , 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, https://doi.org/10.1175/JAM2492.1.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C. , G. G. Carrió , W. R. Cotton , P. J. DeMott , and A. J. Prenni , 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L. , and R. Avissar , 2008a: The Ocean–Land–Atmosphere Model (OLAM). Part I: Shallow water tests. Mon. Wea. Rev., 136, 40334044, https://doi.org/10.1175/2008MWR2522.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L. , and R. Avissar , 2008b: The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and tests of the nonhydrostatic dynamic core. Mon. Wea. Rev., 136, 40454062, https://doi.org/10.1175/2008MWR2523.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L. , and R. Avissar , 2011: A direct method for constructing refined regions in unstructured conforming triangular-hexagonal computational grids: Application to OLAM. Mon. Wea. Rev., 139, 39233937, https://doi.org/10.1175/MWR-D-11-00021.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L. , C. J. Tremback , R. A. Pielke , and W. R. Cotton , 1995: An interactive nesting algorithm for stretched grids and variable nesting ratios. J. Appl. Meteor., 34, 994999, https://doi.org/10.1175/1520-0450(1995)034<0994:AINAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L. , W. R. Cotton , G. Feingold , and B. Stevens , 2000: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53, 171183, https://doi.org/10.1016/S0169-8095(99)00044-7.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S. , T. Eidhammer , W. R. Cotton , and S. M. Kreidenweis , 2010: The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation. Atmos. Chem. Phys., 10, 54355447, https://doi.org/10.5194/acp-10-5435-2010.

    • Search Google Scholar
    • Export Citation
  • Warner, J. , 1968: The supersaturation in natural clouds. J. Rech. Atmos., 3, 233237.

All Time Past Year Past 30 Days
Abstract Views 271 0 0
Full Text Views 791 291 23
PDF Downloads 652 203 6