Asymmetric Rainband Processes Leading to Secondary Eyewall Formation in a Model Simulation of Hurricane Matthew (2016)

Chau-Lam Yu aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Chau-Lam Yu in
Current site
Google Scholar
PubMed
Close
,
Anthony C. Didlake Jr. aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Anthony C. Didlake Jr. in
Current site
Google Scholar
PubMed
Close
,
Fuqing Zhang aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fuqing Zhang in
Current site
Google Scholar
PubMed
Close
, and
Robert G. Nystrom aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Robert G. Nystrom in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamics of an asymmetric rainband complex leading into secondary eyewall formation (SEF) are examined in a simulation of Hurricane Matthew (2016), with particular focus on the tangential wind field evolution. Prior to SEF, the storm experiences an axisymmetric broadening of the tangential wind field as a stationary rainband complex in the downshear quadrants intensifies. The axisymmetric acceleration pattern that causes this broadening is an inward-descending structure of positive acceleration nearly 100 km wide in radial extent and maximizes in the low levels near 50 km radius. Vertical advection from convective updrafts in the downshear-right quadrant largely contributes to the low-level acceleration maximum, while the broader inward-descending pattern is due to horizontal advection within stratiform precipitation in the downshear-left quadrant. This broad slantwise pattern of positive acceleration is due to a mesoscale descending inflow (MDI) that is driven by midlevel cooling within the stratiform regions and draws absolute angular momentum inward. The MDI is further revealed by examining the irrotational component of the radial velocity, which shows the MDI extending downwind into the upshear-left quadrant. Here, the MDI connects with the boundary layer, where new convective updrafts are triggered along its inner edge; these new upshear-left updrafts are found to be important to the subsequent axisymmetrization of the low-level tangential wind maximum within the incipient secondary eyewall.

Deceased.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chau-Lam Yu, cuy89@psu.edu

Abstract

The dynamics of an asymmetric rainband complex leading into secondary eyewall formation (SEF) are examined in a simulation of Hurricane Matthew (2016), with particular focus on the tangential wind field evolution. Prior to SEF, the storm experiences an axisymmetric broadening of the tangential wind field as a stationary rainband complex in the downshear quadrants intensifies. The axisymmetric acceleration pattern that causes this broadening is an inward-descending structure of positive acceleration nearly 100 km wide in radial extent and maximizes in the low levels near 50 km radius. Vertical advection from convective updrafts in the downshear-right quadrant largely contributes to the low-level acceleration maximum, while the broader inward-descending pattern is due to horizontal advection within stratiform precipitation in the downshear-left quadrant. This broad slantwise pattern of positive acceleration is due to a mesoscale descending inflow (MDI) that is driven by midlevel cooling within the stratiform regions and draws absolute angular momentum inward. The MDI is further revealed by examining the irrotational component of the radial velocity, which shows the MDI extending downwind into the upshear-left quadrant. Here, the MDI connects with the boundary layer, where new convective updrafts are triggered along its inner edge; these new upshear-left updrafts are found to be important to the subsequent axisymmetrization of the low-level tangential wind maximum within the incipient secondary eyewall.

Deceased.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chau-Lam Yu, cuy89@psu.edu
Save
  • Abarca, S. F. , and M. T. Montgomery , 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230, https://doi.org/10.1175/JAS-D-12-0318.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M. , M. T. Montgomery , and W. C. Lee , 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Search Google Scholar
    • Export Citation
  • Black, M. L. , and H. E. Willoughby , 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957, https://doi.org/10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, Q. , and X. Tang , 2019: Effect of the eyewall cold pool on the inner rainband of a tropical cyclone. J. Geophys. Res. Atmos., 124, 12921306, https://doi.org/10.1029/2018JD029107.

    • Search Google Scholar
    • Export Citation
  • Chen, G. , 2018: Secondary eyewall formation and concentric eyewall replacement in association with increased low-level inner-core diabatic cooling. J. Atmos. Sci., 75, 26592685, https://doi.org/10.1175/JAS-D-17-0207.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G. , C. C. Wu , and Y. H. Huang , 2018: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75, 297326, https://doi.org/10.1175/JAS-D-17-0122.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L. , and J. Molinari , 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L. , and J. Molinari , 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, Y. , S. J. Majumdar , and D. S. Nolan , 2017: Secondary eyewall formation in tropical cyclones by outflow–jet interaction. J. Atmos. Sci., 74, 19411958, https://doi.org/10.1175/JAS-D-16-0322.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. , C. Snyder , and A. C. Didlake Jr. , 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 24612477, https://doi.org/10.1175/2007MWR2317.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C. , and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, https://doi.org/10.1175/JAS-D-12-0245.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C. , P. D. Reasor , R. F. Rogers , and W. C. Lee , 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 29092929, https://doi.org/10.1175/JAS-D-17-0348.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J. , and F. Zhang , 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346, https://doi.org/10.1175/MWR-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F. , F. D. Marks , and F. Roux , 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181, https://doi.org/10.1175/1520-0426(1995)012<0171:COTADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A. , and S. R. Freitas , 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D. , M. Helveston , T. F. Lee , F. J. Turk , K. Richardson , C. Sampson , J. Kent , and R. Wade , 2006: Tropical cyclone multiple eyewall configurations. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1, https://doi.org/10.1017/CBO9781107415324.004.

  • Hence, D. A. , and R. A. Houze , 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 10211036, https://doi.org/10.1175/JAS-D-11-0119.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y. , J. Dudhia , and S. H. Chen , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y. H. , M. T. Montgomery , and C. C. Wu , 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Search Google Scholar
    • Export Citation
  • Judt, F. , and S. S. Chen , 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599, https://doi.org/10.1175/2010JAS3471.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D. , 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, https://doi.org/10.1175/JAS-D-13-046.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D. , and Y. Wang , 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P. , and M. Sitkowski , 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. C. , C. P. Chang , Y. T. Yang , and H. J. Jiang , 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770, https://doi.org/10.1175/2009MWR2850.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q. , Y. Wang , and Y. Duan , 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 31443163, https://doi.org/10.1175/JAS-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. , M. M. Bell , R. F. Rogers , and J. D. Doyle , 2019: Axisymmetric potential vorticity evolution of Hurricane Patricia (2015). J. Atmos. Sci., 76, 20432063, https://doi.org/10.1175/JAS-D-18-0373.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , and R. J. Kallenbach , 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, https://doi.org/10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Moon, Y. , and D. S. Nolan , 2010: Dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 17791805, https://doi.org/10.1175/2010JAS3171.1.

    • Search Google Scholar
    • Export Citation
  • Munsell, E. B. , and F. Zhang , 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 3858, https://doi.org/10.1002/2013MS000297.

    • Search Google Scholar
    • Export Citation
  • Noh, Y. , W. G. Cheon , S. Y. Hong , and S. Raasch , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G. , and F. Zhang , 2019: Practical uncertainties in the limited predictability of the record-breaking intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 147, 35353556, https://doi.org/10.1175/MWR-D-18-0450.1.

    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G. , F. Zhang , E. B. Munsell , S. A. Braun , J. A. Sippel , Y. Weng , and K. Emanuel , 2018: Predictability and dynamics of Hurricane Joaquin (2015) explored through convection-permitting ensemble sensitivity experiments. J. Atmos. Sci., 75, 401424, https://doi.org/10.1175/JAS-D-17-0137.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, X. , and Z. M. Tan , 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974, https://doi.org/10.1175/JAS-D-12-084.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, X. , Z. M. Tan , and Q. Xiao , 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109, https://doi.org/10.1175/2010MWR3161.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M. , 2016: Meso-β-scale environment for the stationary band complex of vertically sheared tropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 24422451, https://doi.org/10.1002/qj.2837.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M. , W. H. Schubert , B. D. McNoldy , and J. P. Kossin , 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340, https://doi.org/10.1175/JAS3595.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M. , D. S. Nolan , J. P. Kossin , F. Zhang , and J. Fang , 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, https://doi.org/10.1175/JAS-D-11-0326.1.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M. , J. P. Kossin , and C. M. Rozoff , 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M. , J. P. Kossin , C. M. Rozoff , and J. A. Knaff , 2012: Hurricane eyewall replacement cycle thermodynamics and the relict inner eyewall circulation. Mon. Wea. Rev., 140, 40354045, https://doi.org/10.1175/MWR-D-11-00349.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C. , and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Stewart, S. R. , 2017: Hurricane Matthew. National Hurricane Center Rep., 96 pp., https://doi.org/AL142016.

  • Sun, Y. Q. , Y. Jiang , B. Tan , and F. Zhang , 2013: The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 38183837, https://doi.org/10.1175/JAS-D-13-044.1.

    • Search Google Scholar
    • Export Citation
  • Tang, X. , Z. Tan , J. Fang , Y. Q. Sun , and F. Zhang , 2017: Impacts of the diurnal radiation cycle on secondary eyewall formation. J. Atmos. Sci., 74, 30793098, https://doi.org/10.1175/JAS-D-17-0020.1.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D. , and M. T. Montgomery , 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, https://doi.org/10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Tyner, B. , P. Zhu , J. A. Zhang , S. Gopalakrishnan , F. Marks , and V. Tallapragada , 2018: A top-down pathway to secondary eyewall formation in simulated tropical cyclones. J. Geophys. Res. Atmos., 123, 174197, https://doi.org/10.1002/2017JD027410.

    • Search Google Scholar
    • Export Citation
  • Vetterling, W. T. , S. A. Teukolsky , W. H. Press , and B. P. Flannery , 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, 1010 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, H. , C. C. Wu , and Y. Wang , 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 39113930, https://doi.org/10.1175/JAS-D-15-0146.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H. , Y. Wang , J. Xu , and Y. Duan , 2019: The axisymmetric and asymmetric aspects of the secondary eyewall formation in a numerically simulated tropical cyclone under idealized conditions on an f plane. J. Atmos. Sci., 76, 357378, https://doi.org/10.1175/JAS-D-18-0130.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. , 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y. , and F. Zhang , 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Search Google Scholar
    • Export Citation
  • Weng, Y. , and F. Zhang , 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E. , J. A. Clos , and M. G. Shoeibah , 1982: Concentric eye walls, secondary wind maxima, and the evolution of hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E. , F. D. Marks , and R. H. Feinberg , 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211, https://doi.org/10.1175/1520-0469(1984)041<3189:SAMCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C. , Y.-H. Huang , and G.-Y. Lien , 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527, https://doi.org/10.1175/MWR-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, K. E. D. , and A. C. Didlake , 2018: Analyzing tropical cyclone structures during secondary eyewall formation using aircraft in situ observations. Mon. Wea. Rev., 146, 39773993, https://doi.org/10.1175/MWR-D-18-0197.1.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-L. , and A. C. Didlake , 2019: Impact of stratiform rainband heating on the tropical cyclone wind field in idealized simulations. J. Atmos. Sci., 76, 24432462, https://doi.org/10.1175/JAS-D-18-0335.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F. , and Y. Weng , 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F. , D. Tao , Y. Q. Sun , and J. D. Kepert , 2017: Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones. J. Adv. Model. Earth Syst., 9, 89112, https://doi.org/10.1002/2016MS000729.

    • Search Google Scholar
    • Export Citation
  • Zhu, P. , and Coauthors, 2015: Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system. Geophys. Res. Lett., 42, 10 02710 036, https://doi.org/10.1002/2015GL066436.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z. , and P. Zhu , 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119, 80498072, https://doi.org/10.1002/2014JD021899.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 403 0 0
Full Text Views 898 243 23
PDF Downloads 874 202 13