Observations of Stably Stratified Flow through a Microscale Gap

Daniel Vassallo aEnvironmental Fluid Dynamics Group, Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Daniel Vassallo in
Current site
Google Scholar
PubMed
Close
,
Raghavendra Krishnamurthy bPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Raghavendra Krishnamurthy in
Current site
Google Scholar
PubMed
Close
,
Robert Menke cDepartment of Wind Energy, Technical University of Denmark, Lyngby, Denmark

Search for other papers by Robert Menke in
Current site
Google Scholar
PubMed
Close
, and
Harindra J. S. Fernando aEnvironmental Fluid Dynamics Group, Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
dDepartment of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Harindra J. S. Fernando in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reports the findings of a comprehensive field investigation on flow through a mountain gap subject to a range of stably stratified environmental conditions. This study was embedded within the Perdigão field campaign, which was conducted in a region of parallel double-ridge topography with ridge-normal wind climatology. One of the ridges has a well-defined gap (col) at the top, and an array of in situ and remote sensors, including a novel triple Doppler lidar system, was deployed around it. The experimental design was mostly guided by previous numerical and theoretical studies conducted with an idealized configuration where a flow (with characteristic velocity U 0 and buoyancy frequency N) approaches normal to a mountain of height h with a gap at its crest, for which the governing parameters are the dimensionless mountain height G = Nh/U 0 and various gap aspect ratios. Modified forms of G were proposed to account for real-world atmospheric variability, and the results are discussed in terms of a gap-averaged value G c . The nature of gap flow was highly dependent on G c , wherein a nearly neutral flow regime (G c < 1), a transitional mountain wave regime [G c ~ O(1)], and a gap-jetting regime [G c > O(1)] were identified. The measurements were in broad agreement with previous numerical and theoretical studies on a single ridge with a gap or double-ridge topography, although details vary. This is the first-ever detailed field study reported on microscale [O(100) m] gap flows, and it provides useful data and insights for future theoretical and numerical studies.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Vassallo, daniel.a.vassallo.4@nd.edu

Abstract

This paper reports the findings of a comprehensive field investigation on flow through a mountain gap subject to a range of stably stratified environmental conditions. This study was embedded within the Perdigão field campaign, which was conducted in a region of parallel double-ridge topography with ridge-normal wind climatology. One of the ridges has a well-defined gap (col) at the top, and an array of in situ and remote sensors, including a novel triple Doppler lidar system, was deployed around it. The experimental design was mostly guided by previous numerical and theoretical studies conducted with an idealized configuration where a flow (with characteristic velocity U 0 and buoyancy frequency N) approaches normal to a mountain of height h with a gap at its crest, for which the governing parameters are the dimensionless mountain height G = Nh/U 0 and various gap aspect ratios. Modified forms of G were proposed to account for real-world atmospheric variability, and the results are discussed in terms of a gap-averaged value G c . The nature of gap flow was highly dependent on G c , wherein a nearly neutral flow regime (G c < 1), a transitional mountain wave regime [G c ~ O(1)], and a gap-jetting regime [G c > O(1)] were identified. The measurements were in broad agreement with previous numerical and theoretical studies on a single ridge with a gap or double-ridge topography, although details vary. This is the first-ever detailed field study reported on microscale [O(100) m] gap flows, and it provides useful data and insights for future theoretical and numerical studies.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel Vassallo, daniel.a.vassallo.4@nd.edu
Save
  • Baines, P. G. , 1979: Observations of stratified flow past three-dimensional barriers. J. Geophys. Res., 84, 78347838, https://doi.org/10.1029/JC084iC12p07834.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G. , 1987: Upstream blocking and airflow over mountains. Annu. Rev. Fluid Mech., 19, 7595, https://doi.org/10.1146/annurev.fl.19.010187.000451.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G. , 1998: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Baines, P. G. , and K. P. Hoinka , 1985: Stratified flow over two-dimensional topography in fluid of infinite depth: A laboratory simulation. J. Atmos. Sci., 42, 16141630, https://doi.org/10.1175/1520-0469(1985)042<1614:SFOTDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blumen, W. , 2016: Atmospheric Processes Over Complex Terrain. Springer, 323 pp.

  • Boyer, D. , P. Davies , H. Fernando , and X. Zhang , 1989: Linearly stratified flow past a horizontal circular cylinder. Philos. Trans. Roy. Soc. London, 328A, 501528, https://doi.org/10.1098/rsta.1989.0049.

    • Search Google Scholar
    • Export Citation
  • Brighton, P. , 1978: Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Meteor. Soc., 104, 289307, https://doi.org/10.1002/qj.49710444005.

    • Search Google Scholar
    • Export Citation
  • Calhoun, R. , R. Heap , M. Princevac , R. Newsom , H. Fernando , and D. Ligon , 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45, 11161126, https://doi.org/10.1175/JAM2391.1.

    • Search Google Scholar
    • Export Citation
  • Choukulkar, A. , and Coauthors, 2017: Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmos. Meas. Tech., 10, 247264, https://doi.org/10.5194/amt-10-247-2017.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K. , S. F. De Wekker , and B. J. Snyder , 2013: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, 750 pp.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J. , 1988: Inertial wind path and sea surface temperature patterns near the Gulf of Tehuantepec and Gulf of Papagayo. J. Geophys. Res., 93, 15 49115 501, https://doi.org/10.1029/JC093iC12p15491.

    • Search Google Scholar
    • Export Citation
  • Colle, B. , and C. Mass , 2000: High-resolution observations and numerical simulations of easterly gap flow through the Strait of Juan de Fuca on 9-10 December 1995. Mon. Wea. Rev., 128, 23982422, https://doi.org/10.1175/1520-0493(2000)128<2398:HROANS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorman, C. , R. Beardsley , and R. Limeburner , 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteor. Soc., 121, 19031921, https://doi.org/10.1002/qj.49712152807.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. , and Coauthors, 2019: The Perdigão: Peering into microscale details of mountain winds. Bull. Amer. Meteor. Soc., 100, 799819, https://doi.org/10.1175/BAMS-D-17-0227.1.

    • Search Google Scholar
    • Export Citation
  • Finnigan, T. D. , J. A. Vine , P. L. Jackson , S. E. Allen , G. A. Lawrence , and D. G. Steyn , 1994: Hydraulic physical modeling and observations of a severe gap wind. Mon. Wea. Rev., 122, 26772687, https://doi.org/10.1175/1520-0493(1994)122<2677:HPMAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaberšek, S. , and D. Durran , 2004: Gap flows through idealized topography, Part I: Forcing by large-scale winds in the nonrotating limit. J. Atmos. Sci., 61, 28462862, https://doi.org/10.1175/JAS-3340.1.

    • Search Google Scholar
    • Export Citation
  • Gaberšek, S. , and D. R. Durran , 2006: Gap flows through idealized topography. Part II: Effects of rotation and surface friction. J. Atmos. Sci., 63, 27202739, https://doi.org/10.1175/JAS3786.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E. , 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Grubišić, V. , and I. Stiperski , 2009: Lee-wave resonances over double bell-shaped obstacles. J. Atmos. Sci., 66, 12051228, https://doi.org/10.1175/2008JAS2885.1.

    • Search Google Scholar
    • Export Citation
  • Gyüre, B. , and I. M. Jánosi , 2003: Stratified flow over asymmetric and double bell-shaped obstacles. Dyn. Atmos. Oceans, 37, 155170, https://doi.org/10.1016/S0377-0265(03)00030-7.

    • Search Google Scholar
    • Export Citation
  • Houghton, D. D. , and A. Kasahara , 1968: Nonlinear shallow fluid flow over an isolated ridge. Commun. Pure Appl. Math., 21 (1), 123, https://doi.org/10.1002/cpa.3160210103.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. , and D. G. Steyn , 1994: Gap winds in a fjord. Part I: Observations and numerical simulation. Mon. Wea. Rev., 122, 26452665, https://doi.org/10.1175/1520-0493(1994)122<2645:GWIAFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C. , and J. J. Finnigan , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. , and D. Lilly , 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320339, https://doi.org/10.1175/1520-0469(1975)032<0320:TDOWID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leo, L. S. , M. Y. Thompson , S. Di Sabatino , and H. J. Fernando , 2016: Stratified flow past a hill: Dividing streamline concept revisited. Bound.-Layer Meteor., 159, 611634, https://doi.org/10.1007/s10546-015-0101-1.

    • Search Google Scholar
    • Export Citation
  • Lin, Q. , W. Lindberg , D. Boyer , and H. Fernando , 1992: Stratified flow past a sphere. J. Fluid Mech., 240, 315354, https://doi.org/10.1017/S0022112092000119.

    • Search Google Scholar
    • Export Citation
  • Long, R. R. , 1952: The flow of a liquid past a barrier in a rotating spherical shell. J. Meteor., 9, 187199, https://doi.org/10.1175/1520-0469(1952)009<0187:TFOALP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, R. R. , 1953: Some aspects of the flow of stratified fluids: I. A theoretical investigation. Tellus, 5, 4258, https://doi.org/10.3402/tellusa.v5i1.8563.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K. , M. Churchfield , S. Lee , and A. Clifton , 2015: Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics. Atmos. Meas. Tech., 8, 907920, https://doi.org/10.5194/amt-8-907-2015.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K. , and Coauthors, 2017: Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign. Bull. Amer. Meteor. Soc., 98, 289314, https://doi.org/10.1175/BAMS-D-15-00151.1.

    • Search Google Scholar
    • Export Citation
  • Mann, J. , and Coauthors, 2017: Complex terrain experiments in the New European Wind Atlas. Philos. Trans. Roy. Soc., 375A, 20160101, https://doi.org/10.1098/rsta.2016.0101.

    • Search Google Scholar
    • Export Citation
  • Marić, T. , and D. R. Durran , 2009: Observations of gap flow in the Wipp Valley on 20 October 1999: Evidence of subsidence. J. Atmos. Sci., 66, 9841001, https://doi.org/10.1175/2008JAS2568.1.

    • Search Google Scholar
    • Export Citation
  • Mayr, G. J. , and Coauthors, 2004: Gap flow measurements during the Mesoscale Alpine Programme. Meteor. Atmos. Phys., 86, 99119, https://doi.org/10.1007/s00703-003-0022-2.

    • Search Google Scholar
    • Export Citation
  • Menke, R. , J. Mann , and N. Vasiljevic , 2018: Perdigão-2017: Multi-lidar flow mapping over the complex terrain site. Technical University of Denmark, accessed 13 July 2020, https://doi.org/10.11583/DTU.7228544.v1.

  • Menke, R. , N. Vasiljević , J. Mann , and J. K. Lundquist , 2019: Characterization of flow recirculation zones at the Perdigão site using multi-lidar measurements. Atmos. Chem. Phys., 19, 27132723, https://doi.org/10.5194/acp-19-2713-2019.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K. , and R. Krishnamurthy , 2020: Doppler Lidar (DL) instrument handbook. Tech. Rep. DOE/SC-ARM/TR-101, Atmospheric Radiation Measurement (ARM) Program, 58 pp.

  • Newsom, R. K. , L. K. Berg , W. J. Shaw , and M. L. Fischer , 2015: Turbine-scale wind field measurements using dual-Doppler lidar. Wind Energy, 18, 219235, https://doi.org/10.1002/we.1691.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K. , W. A. Brewer , J. M. Wilczak , D. E. Wolfe , S. P. Oncley , and J. K. Lundquist , 2017: Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmos. Meas. Tech., 10, 12291240, https://doi.org/10.5194/amt-10-1229-2017.

    • Search Google Scholar
    • Export Citation
  • Overland, J. , 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 25302534, https://doi.org/10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Overland, J. , and B. Walter , 1981: Gap winds in the Strait of Juan de Fuca. Mon. Wea. Rev., 109, 22212233, https://doi.org/10.1175/1520-0493(1981)109<2221:GWITSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, F. , and R. Smith , 1999: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905923, https://doi.org/10.1175/1520-0469(1999)056<0905:GWAWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pearson, G. , F. Davies , and C. Collier , 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, https://doi.org/10.1175/2008JTECHA1128.1.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K. , R. K. Goodrich , C. S. Morse , A. Yates , R. Barron , and S. A. Cohn , 2011: The Juneau terrain-induced turbulence alert system. Bull. Amer. Meteor. Soc., 92, 299313, https://doi.org/10.1175/2010BAMS3024.1.

    • Search Google Scholar
    • Export Citation
  • Princevac, M. , and H. Fernando , 2008: Morning breakup of cold pools in complex terrain. J. Fluid Mech., 616, 99109, https://doi.org/10.1017/S0022112008004199.

    • Search Google Scholar
    • Export Citation
  • Queney, P. , 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626, https://doi.org/10.1175/1520-0477-29.1.16.

    • Search Google Scholar
    • Export Citation
  • Reed, T. R. , 1931: Gap winds of the Strait of Juan de Fuca. Mon. Wea. Rev., 59, 373376, https://doi.org/10.1175/1520-0493(1931)59<373:GWOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K. , 1993: A numerical study of the local downslope wind “Yamaji-kaze” in Japan Part II: Non-linear aspect of the 3-D flow over a mountain ridge with a col. J. Meteor. Soc. Japan, 71, 247272, https://doi.org/10.2151/jmsj1965.71.2_247.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. , 1952: Mountain-gap winds; A study of surface wind at Gibraltar. Quart. J. Roy. Meteor. Soc., 78, 5361, https://doi.org/10.1002/qj.49707833507.

    • Search Google Scholar
    • Export Citation
  • Sheppard, P. , 1956: Airflow over mountains. Quart. J. Roy. Meteor. Soc., 82, 528529, https://doi.org/10.1002/qj.49708235418.

  • Smith, R. B. , 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364, https://doi.org/10.3402/tellusa.v32i4.10590.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M. , and C. Schär , 2001: Rotational aspects of stratified gap flows and shallow föhn. Quart. J. Roy. Meteor. Soc., 127, 161187, https://doi.org/10.1002/qj.49712757110.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J. , D. M. Schultz , and B. A. Colle , 1998: The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 26732691, https://doi.org/10.1175/1520-0493(1998)126<2673:TSAEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stiperski, I. , and V. Grubišić , 2011: Trapped lee wave interference in the presence of surface friction. J. Atmos. Sci., 68, 918936, https://doi.org/10.1175/2010JAS3495.1.

    • Search Google Scholar
    • Export Citation
  • Stiperski, I. , and Coauthors, 2017: Water tank experiments on stratified flow over double mountain-shaped obstacles at high-Reynolds number. Atmosphere, 8, 13, https://doi.org/10.3390/atmos8010013.

    • Search Google Scholar
    • Export Citation
  • Trüb, J. , and H. Davies , 1995: Flow over a mesoscale ridge: Pathways to regime transition. Tellus, 47A, 502524, https://doi.org/10.3402/tellusa.v47i4.11542.

    • Search Google Scholar
    • Export Citation
  • Vasiljević, N. , and Coauthors, 2017: Perdigão 2015: Methodology for atmospheric multi-Doppler lidar experiments. Atmos. Meas. Tech., 10, 34633483, https://doi.org/10.5194/amt-10-3463-2017.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. , C. M. Hocut , S. W. Hoch , E. Creegan , H. J. Fernando , C. D. Whiteman , M. Felton , and G. Huynh , 2016: Triple Doppler wind lidar observations during the mountain terrain atmospheric modeling and observations field campaign. J. Appl. Remote Sens., 10, 026015, https://doi.org/10.1117/1.JRS.10.026015.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M. D. , G. Mayr , R. Banta , and A. Gohm , 2004: Observations of the temporal evolution and spatial structure of the gap flow in the Wipp Valley on 2 and 3 October 1999. Mon. Wea. Rev., 132, 26842697, https://doi.org/10.1175/MWR2817.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D. , 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Winters, K. B. , and L. Armi , 2014: Topographic control of stratified flows: Upstream jets, blocking and isolating layers. J. Fluid Mech., 753, 80103, https://doi.org/10.1017/jfm.2014.363.

    • Search Google Scholar
    • Export Citation
  • Xu, X. , and C. Yi , 2013: The influence of geometry on recirculation and CO2 transport over forested hills. Meteor. Atmos. Phys., 119, 187196, https://doi.org/10.1007/s00703-012-0224-6.

    • Search Google Scholar
    • Export Citation
  • Zängl, G. , 2002: Stratified flow over a mountain with a gap: Linear theory and numerical simulations. Quart. J. Roy. Meteor. Soc., 128, 927949, https://doi.org/10.1256/0035900021643755.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 324 0 0
Full Text Views 536 165 32
PDF Downloads 435 107 9