• Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, https://doi.org/10.1126/science.1092779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., I. Koren, O. Altaratz, R. H. Heiblum, G. Dagan, and L. Pinto, 2017: How do changes in warm-phase microphysics affect deep convective clouds? Atmos. Chem. Phys., 17, 95859598, https://doi.org/10.5194/acp-17-9585-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., J. Fan, Y. Yin, and B. Han, 2020: Aerosol impacts on mesoscale convective systems forming under different vertical wind shear conditions. J. Geophys. Res. Atmos., 125, e2018JD030027, https://doi.org/10.1029/2018JD030027.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and V. Kapustin, 2002: A Pacific aerosol survey. Part I: A decade of data on particle production, transport, evolution, and mixing in the troposphere. J. Atmos. Sci., 59, 363382, https://doi.org/10.1175/1520-0469(2002)059<0363:APASPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • dos Santos, M. J., M. A. F. Silva Dias, and E. D. Freitas, 2014: Influence of local circulations on wind, moisture, and precipitation close to Manaus City, Amazon Region, Brazil. J. Geophys. Res. Atmos., 119, 13 23313 249, https://doi.org/10.1002/2014JD021969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, and M. Ovchinnikov, 2010: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer. Environ. Res. Lett., 5, 044005, https://doi.org/10.1088/1748-9326/5/4/044005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012a: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, https://doi.org/10.1029/2012GL051851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012b: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2011: Droplet nucleation: Physically based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, https://doi.org/10.1029/2011MS000074.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2016: Untangling microphysical impacts on deep convection applying a novel modeling methodology. Part II: Double-moment microphysics. J. Atmos. Sci., 73, 37493770, https://doi.org/10.1175/JAS-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2020: Do ultrafine cloud condensation nuclei invigorate deep convection? J. Atmos. Sci., 77, 25672583, https://doi.org/10.1175/JAS-D-20-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., L. M. Miloshevich, C. Schmitt, A. Bansemer, C. Twohy, M. R. Poellot, A. Fridlind, and H. Gerber, 2005: Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. J. Atmos. Sci., 62, 4164, https://doi.org/10.1175/JAS-3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°. J. Atmos. Sci., 66, 35303562, https://doi.org/10.1175/2009JAS3107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, https://doi.org/10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaenicke, R., 1993: Tropospheric aerosols. Aerosol–Cloud–Climate Interactions, P. Hobbs, Ed., Academic Press, 1–31.

    • Crossref
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and M. Pinsky, 2018: Physical Processes in Clouds and Cloud Modeling. Cambridge University Press. 642 pp.

    • Crossref
    • Export Citation
  • Khain, A. P., M. Ovchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, https://doi.org/10.1016/S0169-8095(00)00064-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. Benmoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt of classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., V. Phillips, N. Benmoshe, and A. Pokrovsky, 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807, https://doi.org/10.1175/2011JAS3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Feingold, and L. A. Remer, 2010: The invigoration of deep convective clouds over the Atlantic: Aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys., 10, 88558872, https://doi.org/10.5194/acp-10-8855-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., O. Altaratz, L. A. Remer, G. Feingold, J. V. Martins, and R. H. Heiblum, 2012: Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci., 5, 118122, https://doi.org/10.1038/ngeo1364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and I. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., 2018: A numerical investigation of the potential effects of aerosol-induced warming and updraft width and slope on updraft intensity in deep convective clouds. J. Atmos. Sci., 75, 535554, https://doi.org/10.1175/JAS-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., and J. H. Seinfeld, 2011: Theoretical basis for convective invigoration due to increased aerosol concentration. Atmos. Chem. Phys., 11, 54075429, https://doi.org/10.5194/acp-11-5407-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, https://doi.org/10.5194/acp-12-9941-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, and R. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF Model to investigate aerosol-cloud interaction. J. Geophys. Res., 113, D15211, https://doi.org/10.1029/2007JD009361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, https://doi.org/10.1038/ngeo1313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., G. F. Fisch, L. M. Alves, N. V. Sousa, R. Fu, and Y. Zhuang, 2017: Meteorological context of the onset and end of the rainy season in central Amazonia during the GOAmazon2014/5. Atmos. Chem. Phys., 17, 76717681, https://doi.org/10.5194/acp-17-7671-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S. T., and Coauthors, 2017: The Green Ocean Amazon experiment (GOAmazon2014/5) observes pollution affecting gases, aerosols, clouds, and rainfall over the rain forest. Bull. Amer. Meteor. Soc., 98, 981997, https://doi.org/10.1175/BAMS-D-15-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys., 11, 10 50310 523, https://doi.org/10.5194/acp-11-10503-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaite, J., A. Manders, G. de Leeuw, D. Ceburnis, C. Monahan, A.-I. Partanen, H. Korhonen, and C. D. O’Dowd, 2014: A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys., 14, 18371852, https://doi.org/10.5194/acp-14-1837-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761, https://doi.org/10.1175/JAS3869.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. P. Mazin, A. Korolev, and A. P. Khain, 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 27782793, https://doi.org/10.1175/JAS-D-12-077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. P. Mazin, A. Korolev, and A. P. Khain, 2014: Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra. J. Geophys. Res. Atmos., 119, 12 87212 887, https://doi.org/10.1002/2014JD021885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, https://doi.org/10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440442, https://doi.org/10.1038/35013030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, A. M., S. M. Saleeby, and S. C. van den Heever, 2015: Aerosol-induced mechanisms for cumulus congestus growth. J. Geophys. Res. Atmos., 120, 89418952, https://doi.org/10.1002/2015JD023743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shpund, J., A. P. Khain, and D. Rosenfeld, 2019a: Effects of sea spray on microphysics and intensity of deep convective clouds. J. Geophys. Res. Atmos., 124, 94849509, https://doi.org/10.1029/2018JD029893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shpund, J., A. P. Khain, and D. Rosenfeld, 2019b: Effects of sea spray on the dynamics and microphysics of an idealized tropical cyclone. J. Atmos. Sci., 76, 22132234, https://doi.org/10.1175/JAS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, https://doi.org/10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Kuhara, 1993: Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. J. Meteor. Soc. Japan, 71, 2131, https://doi.org/10.2151/jmsj1965.71.1_21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S., and Coauthors, 2016: Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GOAmazon2014/5 experiment. Atmos. Chem. Phys., 16, 14 24914 264, https://doi.org/10.5194/acp-16-14249-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and X. Li, 2016: The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems. J. Geophys. Res. Atmos., 121, 62996320, https://doi.org/10.1002/2015JD024267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2009: Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophys. Res. Lett., 36, L01807, https://doi.org/10.1029/2008GL035846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, https://doi.org/10.1175/JAM2492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, https://doi.org/10.1029/2004JD005720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Fan, R. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos., 118, 53615379, https://doi.org/10.1002/jgrd.50432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., R. Zhang, and R. Saravanan, 2014: Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun., 5, 3098, https://doi.org/10.1038/ncomms4098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., G. Li, J. Fan, D. L. Wu, and M. J. Molina, 2007: Intensification of Pacific storm track linked to Asian pollution. Proc. Natl. Acad. Sci. USA, 104, 52955299, https://doi.org/10.1073/pnas.0700618104.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 284 284 71
Full Text Views 105 105 42
PDF Downloads 112 112 37

Comments on “Do Ultrafine Cloud Condensation Nuclei Invigorate Deep Convection?”

View More View Less
  • 1 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • 2 Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

Here we elaborate on the deficiencies associated with the theoretical arguments and model simulations in a paper by Grabowski and Morrison (2020, hereafter GM20) that argued convective invigoration by aerosols does not exist. We show that the invigoration can be supported by both accurate theoretical analysis and explicit physics modeling with prognostic supersaturation and aerosols. Negligible invigoration by aerosols via drop freezing in GM20 was explained by a complete compensation between the heating effect from the freezing of extra liquid water and the extra loading effect during droplet ascending. But the reality is that droplet ascending then freezing occur at different locations and time scales, producing complex nonlinear responses that depend on the duration and location of the forcing. Also, this argument neglects the effect of off-loading of precipitating ice particles, increases in condensation during ascending, and riming and deposition accompanying droplet freezing. Regarding the warm-phase invigoration, the quasi-steady assumption for supersaturation as adopted in GM20 makes condensation independent of droplet number and size, therefore an incorrect interpretation of warm-phase invigoration. We illustrate that the quasi-steady assumption is invalid for updrafts of deep convective clouds in clean conditions because of the high acceleration of vertical velocity and the fast depletion of droplets by raindrop formation and accretion. Any assumption imposed on supersaturation, such as quasi-steady approximation and saturation adjustment, leads to errors in the evaluation of aerosol effects on diffusional growth and related buoyancy. Furthermore, we demonstrate that the piggybacking approach they used cannot prove or disprove the convective invigoration.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jiwen Fan, jiwen.fan@pnnl.gov; Alexander Khain, alexander.khain@mail.huji.ac.il

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0012.1.

Abstract

Here we elaborate on the deficiencies associated with the theoretical arguments and model simulations in a paper by Grabowski and Morrison (2020, hereafter GM20) that argued convective invigoration by aerosols does not exist. We show that the invigoration can be supported by both accurate theoretical analysis and explicit physics modeling with prognostic supersaturation and aerosols. Negligible invigoration by aerosols via drop freezing in GM20 was explained by a complete compensation between the heating effect from the freezing of extra liquid water and the extra loading effect during droplet ascending. But the reality is that droplet ascending then freezing occur at different locations and time scales, producing complex nonlinear responses that depend on the duration and location of the forcing. Also, this argument neglects the effect of off-loading of precipitating ice particles, increases in condensation during ascending, and riming and deposition accompanying droplet freezing. Regarding the warm-phase invigoration, the quasi-steady assumption for supersaturation as adopted in GM20 makes condensation independent of droplet number and size, therefore an incorrect interpretation of warm-phase invigoration. We illustrate that the quasi-steady assumption is invalid for updrafts of deep convective clouds in clean conditions because of the high acceleration of vertical velocity and the fast depletion of droplets by raindrop formation and accretion. Any assumption imposed on supersaturation, such as quasi-steady approximation and saturation adjustment, leads to errors in the evaluation of aerosol effects on diffusional growth and related buoyancy. Furthermore, we demonstrate that the piggybacking approach they used cannot prove or disprove the convective invigoration.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jiwen Fan, jiwen.fan@pnnl.gov; Alexander Khain, alexander.khain@mail.huji.ac.il

The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0012.1.

Save