• Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergemann, M., C. Jakob, and T. P. Lane, 2015: Global detection and analysis of coastline-associated rainfall using an objective pattern recognition technique. J. Climate, 28, 72257236, https://doi.org/10.1175/JCLI-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2014: The optimal state for gravity currents in shear. J. Atmos. Sci., 71, 448468, https://doi.org/10.1175/JAS-D-13-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cafaro, C., and G. G. Rooney, 2018: Characteristics of colliding density currents: A numerical and theoretical study. Quart. J. Roy. Meteor. Soc., 144, 17611771, https://doi.org/10.1002/qj.3337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123, https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohuet, J. B., R. Romero, V. Homar, V. Ducrocq, and C. Ramis, 2011: Initiation of a severe thunderstorm over the Mediterranean Sea. Atmos. Res., 100, 603620, https://doi.org/10.1016/j.atmosres.2010.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, S., 2019: Means and long-term trends of global coastal zone precipitation. Sci. Rep., 9, 5401, https://doi.org/10.1038/s41598-019-41878-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, A. Shapiro, J. A. Milbrandt, and A. D. Schenkman, 2016: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part II: Analysis of buoyancy and dynamic pressure forces in simulated tornado-like vortices. J. Atmos. Sci., 73, 10391061, https://doi.org/10.1175/JAS-D-15-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., E. D. Skyllingstad, P. Zuidema, and A. S. Chandra, 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci., 74, 11491168, https://doi.org/10.1175/JAS-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part II: Variations in vertical wind shear. J. Atmos. Sci., 42, 24042414, https://doi.org/10.1175/1520-0469(1985)042<2404:TDNMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, J. W., and P. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134, 19191941, https://doi.org/10.1175/MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuka, V., 2015: PoisFFT—A free parallel fast Poisson solver. Appl. Math. Comput., 267, 356364, https://doi.org/10.1016/j.amc.2015.03.011.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209228, https://doi.org/10.1016/0021-9991(75)90037-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res., 121, 11381155, https://doi.org/10.1002/2015JD023813.

  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., and R. S. Schumacher, 2020: Analysis of back-building convection in simulations with a strong low-level stable layer. Mon. Wea. Rev., 148, 37733797, https://doi.org/10.1175/MWR-D-19-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Liu, Y. Liu, and J. C. Knievel, 2019: Budget analyses of a record-breaking rainfall event in the coastal metropolitan city of Guangzhou, China. J. Geophys. Res. Atmos., 124, 93919406, https://doi.org/10.1029/2018JD030229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, https://doi.org/10.1175/JAS-D-14-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kömüşçü, A. Ü., A. Erkan, and S. Çelik, 1998: Analysis of meteorological and terrain features leading to the Izmir flash flood, 3–4 November 1995. Nat. Hazards, 18, 125, https://doi.org/10.1023/A:1008078920113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 11791195, https://doi.org/10.1175/2010WAF2222379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2011: Impact of environmental variations on simulated squall lines interacting with terrain. Mon. Wea. Rev., 139, 31633183, https://doi.org/10.1175/2011MWR3635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2015: Offshore propagation of coastal precipitation. J. Atmos. Sci., 72, 45534568, https://doi.org/10.1175/JAS-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., 2020: Squall line response to coastal mid-Atlantic thermodynamic heterogeneities. J. Atmos. Sci., 77, 41434170, https://doi.org/10.1175/JAS-D-20-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2011: Convective storm structures and ambient conditions associated with severe weather over the northeast United States. Wea. Forecasting, 26, 940956, https://doi.org/10.1175/WAF-D-11-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U.S. coast. Mon. Wea. Rev., 140, 38053819, https://doi.org/10.1175/MWR-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2013: Processes controlling the structure and longevity of two quasi-linear convective systems crossing the southern New England coast. Mon. Wea. Rev., 141, 37103734, https://doi.org/10.1175/MWR-D-12-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and T. Kading, 2018: The behavior of squall lines in horizontally heterogeneous coastal environments. J. Atmos. Sci., 75, 12431269, https://doi.org/10.1175/JAS-D-17-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, M. E., and W. E. Howell, 1967: Katabatic winds in the equatorial Andes. J. Atmos. Sci., 24, 2935, https://doi.org/10.1175/1520-0469(1967)024<0029:KWITEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vertical vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, https://doi.org/10.1175/JAS-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 430 pp.

    • Crossref
    • Export Citation
  • Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 24552464, https://doi.org/10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogino, S. Y., M. D. Yamanaka, S. Mori, and J. Matsumoto, 2016: How much is the precipitation amount over the tropical coastal region? J. Climate, 29, 12311236, https://doi.org/10.1175/JCLI-D-15-0484.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pucillo, A., M. M. Miglietta, K. Lombardo, and A. Manzato, 2020: Application of a simple analytical model to severe winds produced by a bow echo like storm in northeast Italy. Meteor. Appl., 27, e1868, https://doi.org/10.1002/met.1868.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and Y. L. Lin, 2007: The effects of a mountain on the propagation of a preexisting convective system for blocked and unblocked flow regimes. J. Atmos. Sci., 64, 24012421, https://doi.org/10.1175/JAS3959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, https://doi.org/10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, V. H., S. D. Mobbs, R. R. Burton, M. Hobby, F. Aoshima, V. Wulfmeyer, and P. Di Girolamo, 2015: The role of orography in the regeneration of convection: A case study from the convective and orographically-induced precipitation study. Meteor. Z., 24, 8397, https://doi.org/10.1127/metz/2014/0418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J., H. McGowan, H. Richter, K. Walsh, T. Weckwerth, and M. Coleman, 2016: The coastal convective interactions experiment (CCIE): Understanding the role of sea breezes for hailstorm hotspots in eastern Australia. Bull. Amer. Meteor. Soc., 97, 16871698, https://doi.org/10.1175/BAMS-D-14-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, J.-H., C.-S. Chen, T.-C. C. Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 11231138, https://doi.org/10.1175/1520-0493(2000)128<1123:OEOASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., S. T. Gille, S. G. Llewellyn Smith, P. F. Linden, and C. Cenedese, 2017: Characteristics of colliding sea breeze gravity current fronts: A laboratory study. Quart. J. Roy. Meteor. Soc., 143, 14341441, https://doi.org/10.1002/qj.3015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., B. E. Mapes, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131, 813829, https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, https://doi.org/10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, J. I. Hamada, M. D. Yamanaka, and F. Kimura, 2009: Why a large amount of rain falls over the sea in the vicinity of western Sumatra Island during nighttime. J. Appl. Meteor. Climatol., 48, 13451361, https://doi.org/10.1175/2009JAMC2052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692701, https://doi.org/10.1175/WAF-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, and Y. Wang, 2015: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72, 19631986, https://doi.org/10.1175/JAS-D-14-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys., 38, 12831305, https://doi.org/10.1007/s10712-017-9447-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 371 169 0
Full Text Views 322 202 16
PDF Downloads 397 262 20

Precipitation Enhancement in Squall Lines Moving over Mountainous Coastal Regions

Fan WuaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fan Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2505-0146
and
Kelly LombardoaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kelly Lombardo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A mechanism for precipitation enhancement in squall lines moving over mountainous coastal regions is quantified through idealized numerical simulations. Storm intensity and precipitation peak over the sloping terrain as storms descend from an elevated plateau toward the coastline and encounter the marine atmospheric boundary layer (MABL). Storms are most intense as they encounter the deepest MABLs. As the descending storm outflow collides with a moving MABL (sea breeze), surface and low-level air parcels initially accelerate upward, though their ultimate trajectory is governed by the magnitude of the negative nonhydrostatic inertial pressure perturbation behind the cold pool leading edge. For shallow MABLs, the baroclinic gradient across the gust front generates large horizontal vorticity, a low-level negative pressure perturbation, and thus a downward acceleration of air parcels following their initial ascent. A deep MABL reduces the baroclinically generated vorticity, leading to a weaker pressure perturbation and minimal downward acceleration, allowing air to accelerate into a storm’s updraft. Once storms move away from the terrain base and over the full depth of the MABLs, storms over the deepest MABLs decay most rapidly, while those over the shallowest MABLs initially intensify. Though elevated ascent exists above all MABLs, the deepest MABLs substantially reduce the depth of the high-θe layer above the MABLs and limit instability. This relationship is insensitive to MABL temperature, even though surface-based ascent is present for the less cold MABLs, the MABL thermal deficit is smaller, and convective available potential energy (CAPE) is higher.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fan Wu, fvw5116@psu.edu

Abstract

A mechanism for precipitation enhancement in squall lines moving over mountainous coastal regions is quantified through idealized numerical simulations. Storm intensity and precipitation peak over the sloping terrain as storms descend from an elevated plateau toward the coastline and encounter the marine atmospheric boundary layer (MABL). Storms are most intense as they encounter the deepest MABLs. As the descending storm outflow collides with a moving MABL (sea breeze), surface and low-level air parcels initially accelerate upward, though their ultimate trajectory is governed by the magnitude of the negative nonhydrostatic inertial pressure perturbation behind the cold pool leading edge. For shallow MABLs, the baroclinic gradient across the gust front generates large horizontal vorticity, a low-level negative pressure perturbation, and thus a downward acceleration of air parcels following their initial ascent. A deep MABL reduces the baroclinically generated vorticity, leading to a weaker pressure perturbation and minimal downward acceleration, allowing air to accelerate into a storm’s updraft. Once storms move away from the terrain base and over the full depth of the MABLs, storms over the deepest MABLs decay most rapidly, while those over the shallowest MABLs initially intensify. Though elevated ascent exists above all MABLs, the deepest MABLs substantially reduce the depth of the high-θe layer above the MABLs and limit instability. This relationship is insensitive to MABL temperature, even though surface-based ascent is present for the less cold MABLs, the MABL thermal deficit is smaller, and convective available potential energy (CAPE) is higher.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fan Wu, fvw5116@psu.edu
Save