• Berg, R., 2018: Tropical Storm Cindy (20–23 June 2017). Tropical cyclone report, NHC Tech. Rep. AL032017, 41 pp., https://www.nhc.noaa.gov/data/tcr/AL032017_Cindy.pdf.

  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: Texmex analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P., L. Harrison, M. Beaubien, R. Bluth, R. Woods, A. Penny, R. W. Smith, and J. D. Doyle, 2017: High-Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777796, https://doi.org/10.1175/JTECH-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes. Volume II: Observations and Theory of Weather Systems, Oxford University Press, 608 pp.

  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, https://doi.org/10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426, https://doi.org/10.1175/1520-0469(1993)050<2401:ANSOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and M. Curcic, 2016: Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Modell., 103, 161176, https://doi.org/10.1016/j.ocemod.2015.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and E. J. Zipser, 2018: Convective Processes Experiments (CPEX) 2017. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 12D.1, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340627.html.

  • Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, https://doi.org/10.1175/JAS-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2016: Cold-conveyor-belt jet, sting jet and slantwise circulations in idealized simulations of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 17811796, https://doi.org/10.1002/qj.2775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, https://doi.org/10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolling, K., and G. Barnes, 2012a: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492505, https://doi.org/10.1175/MWR-D-11-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolling, K., and G. Barnes, 2012b: Warm-core formation in Tropical Storm Humberto (2001). Mon. Wea. Rev., 140, 11771190, https://doi.org/10.1175/MWR-D-11-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res. Oceans, 117, C00J23, https://doi.org/10.1029/2011JC007787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061, https://doi.org/10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, https://doi.org/10.1175/JAS-D-13-066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M, 1975: Tropical cyclone genesis. Atmospheric Science Paper 234, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 121 pp.

  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309324, https://doi.org/10.1175/JAS3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.

  • Heymsfield, G. M., J. Simpson, J. Halverson, L. Tian, E. Ritchie, and J. Molinari, 2006: Structure of highly sheared Tropical Storm Chantal during CAMEX-4. J. Atmos. Sci., 63, 268287, https://doi.org/10.1175/JAS3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., J. Y. Beyon, G. J. Koch, M. Petros, P. J. Petzar, U. N. Singh, B. C. Trieu, and J. Yu, 2014: The Doppler aerosol wind (dawn) airborne, wind-profiling coherent-detection lidar system: Overview and preliminary flight results. J. Atmos. Oceanic Technol., 31, 826842, https://doi.org/10.1175/JTECH-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2013: Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Wea. Rev., 141, 192210, https://doi.org/10.1175/MWR-D-11-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2015: Subsidence warming as an underappreciated ingredient in tropical cyclogenesis. Part I: Aircraft observations. J. Atmos. Sci., 72, 42374260, https://doi.org/10.1175/JAS-D-14-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15, 337349, https://doi.org/10.1175/1520-0469(1958)015<0337:OTSAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., L. H. Baker, S. L. Gray, J. Methven, and R. S. Plant, 2014: Distinguishing the cold conveyor belt and sting jet airstreams in an intense extratropical cyclone. Mon. Wea. Rev., 142, 25712595, https://doi.org/10.1175/MWR-D-13-00348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. J. Galarneau, L. F. Bosart, R. W. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, https://doi.org/10.1175/MWR-D-12-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., E. L. Davies, J. G. Fairman, T. J. Galarneau, and D. M. Schultz, 2015: Revisiting the 26.5°C sea surface temperature threshold for tropical cyclone development. Bull. Amer. Meteor. Soc., 96, 19291943, https://doi.org/10.1175/BAMS-D-13-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miltenberger, A. K., S. Pfahl, and H. Wernli, 2013: An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO. Geosci. Model Dev., 6, 19892004, https://doi.org/10.5194/gmd-6-1989-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., and M. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, K. Oouchi, Ed., Nova Science Publishers, Inc., 1–36.

  • Papin, P. P., L. F. Bosart, and R. D. Torn, 2017: A climatology of Central American gyres. Mon. Wea. Rev., 145, 19832000, https://doi.org/10.1175/MWR-D-16-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, https://doi.org/10.5194/acp-11-9395-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., J.-J. Baik, and H. F. Pierce, 1994: The environmental influence on tropical cyclone precipitation. J. Appl. Meteor., 33, 573593, https://doi.org/10.1175/1520-0450(1994)033<0573:TEIOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. M. Sienkiewicz, 2013: Using frontogenesis to identify sting jets in extratropical cyclones. Wea. Forecasting, 28, 603613, https://doi.org/10.1175/WAF-D-12-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shelton, K. L., and J. Molinari, 2009: Life of a six-hour hurricane. Mon. Wea. Rev., 137, 5167, https://doi.org/10.1175/2008MWR2472.1.

  • Simpson, R., and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami, FL, Amer. Meteor. Soc., D4-1–D4-10.

  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stossmeister, G. J., and G. M. Barnes, 1992: The development of a second circulation center within Tropical Storm Isabel (1985). Mon. Wea. Rev., 120, 685697, https://doi.org/10.1175/1520-0493(1992)120<0685:TDOASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, https://doi.org/10.1175/JAS-D-11-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2019: Evolution of dynamic and thermodynamic structures before and during rapid intensification of tropical cyclones: Sensitivity to vertical wind shear. Mon. Wea. Rev., 147, 11711191, https://doi.org/10.1175/MWR-D-18-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, https://doi.org/10.1175/JAS-D-11-0298.1.

  • Zipser, E. J., 1977: Mesoscale and convective–scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 87 87 34
Full Text Views 18 18 3
PDF Downloads 29 29 8

Subsidence Warming in the Tropical Cyclogenesis of Cindy (2017): CPEX Observations and Coupled Modeling

View More View Less
  • 1 a Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The formation of tropical cyclones (TCs) in unfavorable large-scale environments remains a challenge for TC forecasting. Tropical Storm (TS) Cindy (2017) formed at 1800 UTC 20 June 2017 in the Gulf of Mexico despite strong vertical wind shear, low midtropospheric relative humidity, and poorly organized convection. A key to TC genesis is the initial development of a warm core within an emergent cyclonic vortex, a process that occurs on small spatial scales and is often difficult to observe. TS Cindy was observed during the Convective Processes Experiment (CPEX) field campaign in 2017 by the NASA DC-8 aircraft, equipped with a Doppler wind lidar, precipitation radar, and GPS dropsondes. This study combines CPEX observations and a cloud-resolving, fully coupled atmosphere–wave–ocean numerical simulation to investigate the formation of TS Cindy. Prior to TC genesis, a shallow cyclonic circulation was embedded in a deep layer of west-southwesterly flow associated with an upper-level trough. Within the disturbance, a warm and dry anomaly was observed by dropsondes near the center of the cyclonic circulation, with a maximum at about the 2.5-km level. In the coupled model simulation, the temperature perturbation reached 5°C along with a dewpoint temperature depression of 8°C. Backward trajectory analysis shows that subsidence is primarily associated with a thermally indirect circulation along the western flank of the storm. Air parcels descend more than 1000 m toward the lower troposphere while warming up by 9°–12°C. The subsidence-induced virtual temperature perturbation in the 1.5–3.5-km layer accounts for 50% of the sea level pressure depression. Subsidence warming, therefore, played a key role in the genesis of TS Cindy.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edoardo Mazza, emazza2@uw.edu

Abstract

The formation of tropical cyclones (TCs) in unfavorable large-scale environments remains a challenge for TC forecasting. Tropical Storm (TS) Cindy (2017) formed at 1800 UTC 20 June 2017 in the Gulf of Mexico despite strong vertical wind shear, low midtropospheric relative humidity, and poorly organized convection. A key to TC genesis is the initial development of a warm core within an emergent cyclonic vortex, a process that occurs on small spatial scales and is often difficult to observe. TS Cindy was observed during the Convective Processes Experiment (CPEX) field campaign in 2017 by the NASA DC-8 aircraft, equipped with a Doppler wind lidar, precipitation radar, and GPS dropsondes. This study combines CPEX observations and a cloud-resolving, fully coupled atmosphere–wave–ocean numerical simulation to investigate the formation of TS Cindy. Prior to TC genesis, a shallow cyclonic circulation was embedded in a deep layer of west-southwesterly flow associated with an upper-level trough. Within the disturbance, a warm and dry anomaly was observed by dropsondes near the center of the cyclonic circulation, with a maximum at about the 2.5-km level. In the coupled model simulation, the temperature perturbation reached 5°C along with a dewpoint temperature depression of 8°C. Backward trajectory analysis shows that subsidence is primarily associated with a thermally indirect circulation along the western flank of the storm. Air parcels descend more than 1000 m toward the lower troposphere while warming up by 9°–12°C. The subsidence-induced virtual temperature perturbation in the 1.5–3.5-km layer accounts for 50% of the sea level pressure depression. Subsidence warming, therefore, played a key role in the genesis of TS Cindy.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edoardo Mazza, emazza2@uw.edu
Save