• Albrecht, B. A., 1981: Parameterization of trade-cumulus cloud amounts. J. Atmos. Sci., 38, 97105, https://doi.org/10.1175/1520-0469(1981)038<0097:POTCCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Augstein, E., H. Schmidt, and F. Ostapoff, 1974: The vertical structure of the atmospheric planetary boundary layer in undisturbed trade winds over the Atlantic Ocean. Bound.-Layer Meteor., 6, 129150, https://doi.org/10.1007/BF00232480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys., 38, 15291568, https://doi.org/10.1007/s10712-017-9428-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, G., B. Stevens, S. Bony, M. Klingebiel, and R. Vogel, 2021: Observed impact of meso-scale vertical motion on cloudiness. J. Atmos. Sci., 78, 24132427, https://doi.org/10.1175/JAS-D-20-0335.1.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., M. A. Miller, and L. DiPretore, 2011: Vertical velocity structure of marine boundary layer trade wind cumulus clouds. J. Geophys. Res., 116, D16206, https://doi.org/10.1029/2010JD015344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Görsdorf, U., V. Lehmann, M. Bauer-Pfundstein, G. Peters, D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, https://doi.org/10.1175/JTECH-D-14-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 2001: Cloud-base fluxes in the cumulus-capped boundary layer. Quart. J. Roy. Meteor. Soc., 127, 407421, https://doi.org/10.1002/qj.49712757209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125, 19131936, https://doi.org/10.1002/qj.49712555802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillemet, B., H. Isaka, and P. Mascart, 1983: Molecular dissipation of turbulent fluctuations in the convective mixed layer Part I: Height variations of dissipation rates. Bound.-Layer Meteor., 27, 141162, https://doi.org/10.1007/BF00239611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., 1970: Preliminary report on the BOMEX sea-air interaction program. Bull. Amer. Meteor. Soc., 51, 809821, https://doi.org/10.1175/1520-0477(1970)051<0809:PROTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingebiel, M., and Coauthors, 2019: Remote sensing of sea salt aerosol below trade wind clouds. J. Atmos. Sci., 76, 11891202, https://doi.org/10.1175/JAS-D-18-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konow, H., 2020: BCO Cloudmask Code v1.0. Zenodo, https://doi.org/10.5281/zenodo.4312818.

    • Crossref
    • Export Citation
  • Kumar, V. V., C. Jakob, A. Protat, C. R. Williams, and P. T. May, 2015: Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia. J. Atmos. Sci., 72, 18371855, https://doi.org/10.1175/JAS-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamer, K., P. Kollias, and L. Nuijens, 2015: Observations of the variability of shallow trade wind cumulus cloudiness and mass flux. J. Geophys. Res. Atmos., 120, 61616178, https://doi.org/10.1002/2014JD022950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., Y. Zhang, and S. A. Klein, 2018: Observed boundary layer controls on shallow cumulus at the ARM Southern Great Plains site. J. Atmos. Sci., 75, 22352255, https://doi.org/10.1175/JAS-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and W. T. Pennell, 1976: The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon. Wea. Rev., 104, 524539, https://doi.org/10.1175/1520-0493(1976)104<0524:TROTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326, https://doi.org/10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonitz, K., B. Stevens, L. Nuijens, V. Sant, L. Hirsch, and A. Seifert, 2015: The signature of aerosols and meteorology in long-term cloud radar observations of trade wind cumuli. J. Atmos. Sci., 72, 46434659, https://doi.org/10.1175/JAS-D-14-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1958: On the structure of the trade wind moist layer. Pap. Phys. Oceanogr. Meteor., 13 (2), https://doi.org/10.1575/1912/1065.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and R. Rotunno, 1990: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47, 11491162, https://doi.org/10.1175/1520-0469(1990)047<1149:VVSITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., M. Köhler, and A. C. M. Beljaars, 2009: A dual mass flux framework for boundary layer convection. Part I: Transport. J. Atmos. Sci., 66, 14651487, https://doi.org/10.1175/2008JAS2635.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, https://doi.org/10.1175/2008JAS2841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuijens, L., I. Serikov, L. Hirsch, K. Lonitz, and B. Stevens, 2014: The distribution and variability of low-level cloud in the North Atlantic trades. Quart. J. Roy. Meteor. Soc., 140, 23642374, https://doi.org/10.1002/qj.2307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 2010: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, Vol. 18, Springer, 954 pp.

    • Crossref
    • Export Citation
  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Schulz, H., R. M. Eastman, and B. Stevens, 2021: Characterization and evolution of organized shallow convection in the downstream North Atlantic trades. J. Geophys. Res. Atmos., 126, e2021JD034575, https://doi.org/10.1029/2021JD034575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., and Coauthors, 2013: The fine-scale structure of the trade wind cumuli over Barbados; an introduction to the CARRIBA project. Atmos. Chem. Phys., 13, 10 06110 077, https://doi.org/10.5194/acp-13-10061-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large-eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, https://doi.org/10.1146/annurev.earth.33.092203.122658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2016: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2020: Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade winds. Quart. J. Roy. Meteor. Soc., 146, 141152, https://doi.org/10.1002/qj.3662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2021: EUREC4A. Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-18, in press.

  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., and J. P. Mellado, 2016: Growth and decay of a convective boundary layer over a surface with a constant temperature. J. Atmos. Sci., 73, 21652177, https://doi.org/10.1175/JAS-D-15-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., and Coauthors, 2019: A new look at the daily cycle of trade wind cumuli. J. Adv. Model. Earth Syst., 11, 31483166, https://doi.org/10.1029/2019MS001746.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 140 140 11
Full Text Views 57 57 8
PDF Downloads 70 70 10

Measuring Shallow Convective Mass Flux Profiles in the Trade Wind Region

View More View Less
  • 1 a Max-Planck-Institut für Meteorologie, Hamburg, Germany
  • | 2 b Universität Hamburg, Hamburg, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Mass flux is a key quantity in parameterizations of shallow convection. To estimate the shallow convective mass flux as accurately as possible, and to test these parameterizations, observations of this parameter are necessary. In this study, we show how much the mass flux varies and how this can be used to test factors that may be responsible for its variation. Therefore, we analyze long-term Doppler radar and Doppler lidar measurements at the Barbados Cloud Observatory over a time period of 30 months, which results in a mean mass flux profile with a peak value of 0.03 kg m−2 s−1 at an altitude of ~730 m, similar to observations from Ghate et al. at the Azores Islands. By combining Doppler radar and Doppler lidar measurements, we find that the cloud-base mass flux depends mainly on the cloud fraction and refutes an idea based on large-eddy simulations that the velocity scale is in major control of the shallow cumulus mass flux. This indicates that the large-scale conditions might play a more important role than what one would deduce from simulations using prescribed large-scale forcings.

Klingebiel’s current affiliation: Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcus Klingebiel, marcus.klingebiel@uni-leipzig.de

Abstract

Mass flux is a key quantity in parameterizations of shallow convection. To estimate the shallow convective mass flux as accurately as possible, and to test these parameterizations, observations of this parameter are necessary. In this study, we show how much the mass flux varies and how this can be used to test factors that may be responsible for its variation. Therefore, we analyze long-term Doppler radar and Doppler lidar measurements at the Barbados Cloud Observatory over a time period of 30 months, which results in a mean mass flux profile with a peak value of 0.03 kg m−2 s−1 at an altitude of ~730 m, similar to observations from Ghate et al. at the Azores Islands. By combining Doppler radar and Doppler lidar measurements, we find that the cloud-base mass flux depends mainly on the cloud fraction and refutes an idea based on large-eddy simulations that the velocity scale is in major control of the shallow cumulus mass flux. This indicates that the large-scale conditions might play a more important role than what one would deduce from simulations using prescribed large-scale forcings.

Klingebiel’s current affiliation: Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcus Klingebiel, marcus.klingebiel@uni-leipzig.de
Save